Evaluate the triple integral u= 2x-y 2 v= / 1 [ F(z, y, z)dV = [ ] [ H(u, v, w)| J(u, v, w)|dudvdu F Remember that: +5 CCT** f(x, y, z)dxdydz where f(x, y, z) = 1 + 0 70 and w= 흉 Triple Integral Region R 14 lower limit 16 upper limit= Ⓒlower limit= upper limit lower limit upper limit= # H(u, v, w) |J(u, v, w)| : [[[H(u, v, w).J(u, v, w)|dudvdu = 1102

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Evaluating Triple Integrals with Change of Variables

#### Problem Statement:
Evaluate the triple integral 
\[
\iiint\limits_R \iiint\limits_0^5 \iiint\limits_y^4 \iiint\limits_{z/3}^{z/3 + 5} f(x, y, z) dz dy dz \quad \text{where} \; f(x, y, z) = x + \frac{z}{3}.
\]
Given transformations:
\[
u = \frac{2x - y}{2}, \quad v = \frac{y}{2}, \quad \text{and} \quad w = \frac{z}{3}.
\]

#### Triple Integral Region:
The region \(R\) is represented in a 3D plot with axes \(x\), \(y\), and \(z\). The bounds for \(x\), \(y\), and \(z\) are represented as different colored planes intersecting to form a prism-shaped volume.

#### Method:
Remember that:
\[
\iiint\limits_R f (x, y, z) dV = \iiint\limits_G H(u, v, w) |J(u, v, w)| du dv dw,
\]
where \(J(u, v, w)\) is the Jacobian determinant of the transformation.

#### Steps:
1. **Define the limits for the new variables \(u\), \(v\), and \(w\)**:

    - \(u\) lower limit = 
    - \(u\) upper limit = 
    - \(v\) lower limit = 
    - \(v\) upper limit = 
    - \(w\) lower limit = 
    - \(w\) upper limit = 

2. **Determine the transformed function \(H(u, v, w)\)**:
    \[
    H(u, v, w) = 
    \]

3. **Calculate the Jacobian determinant \( |J(u, v, w)| \)**:
    \[
    |J(u, v, w)| = 
    \]

4. **Set up the triple integral in terms of \(u\), \(v\), and \(w\)**:
    \[
    \iiint\limits_G H(u, v, w) |J(u, v, w)| du dv dw = 
    \]

If
Transcribed Image Text:### Evaluating Triple Integrals with Change of Variables #### Problem Statement: Evaluate the triple integral \[ \iiint\limits_R \iiint\limits_0^5 \iiint\limits_y^4 \iiint\limits_{z/3}^{z/3 + 5} f(x, y, z) dz dy dz \quad \text{where} \; f(x, y, z) = x + \frac{z}{3}. \] Given transformations: \[ u = \frac{2x - y}{2}, \quad v = \frac{y}{2}, \quad \text{and} \quad w = \frac{z}{3}. \] #### Triple Integral Region: The region \(R\) is represented in a 3D plot with axes \(x\), \(y\), and \(z\). The bounds for \(x\), \(y\), and \(z\) are represented as different colored planes intersecting to form a prism-shaped volume. #### Method: Remember that: \[ \iiint\limits_R f (x, y, z) dV = \iiint\limits_G H(u, v, w) |J(u, v, w)| du dv dw, \] where \(J(u, v, w)\) is the Jacobian determinant of the transformation. #### Steps: 1. **Define the limits for the new variables \(u\), \(v\), and \(w\)**: - \(u\) lower limit = - \(u\) upper limit = - \(v\) lower limit = - \(v\) upper limit = - \(w\) lower limit = - \(w\) upper limit = 2. **Determine the transformed function \(H(u, v, w)\)**: \[ H(u, v, w) = \] 3. **Calculate the Jacobian determinant \( |J(u, v, w)| \)**: \[ |J(u, v, w)| = \] 4. **Set up the triple integral in terms of \(u\), \(v\), and \(w\)**: \[ \iiint\limits_G H(u, v, w) |J(u, v, w)| du dv dw = \] If
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,