Evaluate the surface integral I. -4x dS. S Where S is the triangular region with vertices (4, 0, 0), (0, 2, 0) and (0, 0, – 1). An equation of the plane in which the triangular region lies is given by: = Z Σ Therefore • Y2 -4x dS Σ dy dr where Y1 = Y2 = -4 Σ X2 = Σ Evaluate S. -4x dS = M M M M
Evaluate the surface integral I. -4x dS. S Where S is the triangular region with vertices (4, 0, 0), (0, 2, 0) and (0, 0, – 1). An equation of the plane in which the triangular region lies is given by: = Z Σ Therefore • Y2 -4x dS Σ dy dr where Y1 = Y2 = -4 Σ X2 = Σ Evaluate S. -4x dS = M M M M
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Evaluate the surface integral
-4x dS.
Where S is the triangular region with vertices
(4, 0, 0), (0, 2, 0) and (0,0, –1).
An equation of the plane in which the triangular
region lies is given by:
= Z
Σ
Therefore
• x2
Y2
-4x dS
Σ
dy dæ
where
Yı =
Y2 =
-4
Σ
X2 =
Σ
Evaluate
-4x dS =
M M M M](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0695e04c-6177-4dae-ae8e-62e62853c8ae%2Fa7963a59-fc24-498f-9829-ea9c517d77fa%2Fgl7qubl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Evaluate the surface integral
-4x dS.
Where S is the triangular region with vertices
(4, 0, 0), (0, 2, 0) and (0,0, –1).
An equation of the plane in which the triangular
region lies is given by:
= Z
Σ
Therefore
• x2
Y2
-4x dS
Σ
dy dæ
where
Yı =
Y2 =
-4
Σ
X2 =
Σ
Evaluate
-4x dS =
M M M M
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)