Evaluate the integral. e38 sin(48) de Step 1 We will begin by letting u = sin(48) and dv = e39 de. Then du = sin 46 130 4 cos(40) de and v = 3 3 Step 2 After integration by parts we have e39 sin(48) de = sin(40)e3 4/3 'sin(40) 4/3 e39 cos(40) de- 3 Step 3 We'll now apply the integration by parts procedure to the new integral / e39 cos(48) de, letting U = cos(48) and dv = e39 de. Then du = de and V =
Evaluate the integral. e38 sin(48) de Step 1 We will begin by letting u = sin(48) and dv = e39 de. Then du = sin 46 130 4 cos(40) de and v = 3 3 Step 2 After integration by parts we have e39 sin(48) de = sin(40)e3 4/3 'sin(40) 4/3 e39 cos(40) de- 3 Step 3 We'll now apply the integration by parts procedure to the new integral / e39 cos(48) de, letting U = cos(48) and dv = e39 de. Then du = de and V =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Evaluate the integral.
e38 sin(40) de
Step 1
We will begin by letting u = sin(48) and dv = e39 de.
Then du = sin 40
4 cos(40)
1.e30
de and v =
3
Step 2
After integration by parts we have
sin( 40)e39
4/3
® sin(48)
| | e39 cos(48) de.
e39 sin(48) de
4/3
3
Step 3
We'll now apply the integration by parts procedure to the new integral / e39 cos(48) de, letting U = cos(48)
and dV = e36 de.
Then du =
de and V =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8d88a89c-4743-486c-903a-d25a9887f98a%2Fdab051dd-4054-4079-a769-6b2186705a71%2Fswwr0vs_processed.png&w=3840&q=75)
Transcribed Image Text:Evaluate the integral.
e38 sin(40) de
Step 1
We will begin by letting u = sin(48) and dv = e39 de.
Then du = sin 40
4 cos(40)
1.e30
de and v =
3
Step 2
After integration by parts we have
sin( 40)e39
4/3
® sin(48)
| | e39 cos(48) de.
e39 sin(48) de
4/3
3
Step 3
We'll now apply the integration by parts procedure to the new integral / e39 cos(48) de, letting U = cos(48)
and dV = e36 de.
Then du =
de and V =
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)