Evaluate the integral. 4 + u² du u3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement**

Evaluate the integral:

\[
\int_{2}^{4} \frac{4 + u^2}{u^3} \, du
\]

**Solution Explanation**

You're asked to solve the definite integral from 2 to 4 of the function \(\frac{4 + u^2}{u^3}\).

1. **Simplify the Integrand**: Break down the term into simpler fractions:

   \[
   \frac{4 + u^2}{u^3} = \frac{4}{u^3} + \frac{u^2}{u^3} = 4u^{-3} + u^{-1}
   \]

2. **Integrate Term by Term**:

   - Integrate \(4u^{-3}\):

     \[
     \int 4u^{-3} \, du = 4 \cdot \frac{u^{-2}}{-2} = -2u^{-2}
     \]

   - Integrate \(u^{-1}\):

     \[
     \int u^{-1} \, du = \ln|u|
     \]

3. **Combine the Results**:

   The antiderivative of the function is:

   \[
   -2u^{-2} + \ln|u|
   \]

4. **Evaluate the Definite Integral**: Use the limits of integration from 2 to 4.

   \[
   \left[-2\left(\frac{1}{4^2}\right) + \ln|4|\right] - \left[-2\left(\frac{1}{2^2}\right) + \ln|2|\right]
   \]

   Simplify this expression to find the value of the definite integral.

**Result**

Calculate the final value to solve the integral completely.
Transcribed Image Text:**Problem Statement** Evaluate the integral: \[ \int_{2}^{4} \frac{4 + u^2}{u^3} \, du \] **Solution Explanation** You're asked to solve the definite integral from 2 to 4 of the function \(\frac{4 + u^2}{u^3}\). 1. **Simplify the Integrand**: Break down the term into simpler fractions: \[ \frac{4 + u^2}{u^3} = \frac{4}{u^3} + \frac{u^2}{u^3} = 4u^{-3} + u^{-1} \] 2. **Integrate Term by Term**: - Integrate \(4u^{-3}\): \[ \int 4u^{-3} \, du = 4 \cdot \frac{u^{-2}}{-2} = -2u^{-2} \] - Integrate \(u^{-1}\): \[ \int u^{-1} \, du = \ln|u| \] 3. **Combine the Results**: The antiderivative of the function is: \[ -2u^{-2} + \ln|u| \] 4. **Evaluate the Definite Integral**: Use the limits of integration from 2 to 4. \[ \left[-2\left(\frac{1}{4^2}\right) + \ln|4|\right] - \left[-2\left(\frac{1}{2^2}\right) + \ln|2|\right] \] Simplify this expression to find the value of the definite integral. **Result** Calculate the final value to solve the integral completely.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning