Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Please solve the image
![# Evaluating the Integral Step-by-Step
### Step-by-Step Guide:
We aim to evaluate the integral:
\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]
### Step 1
Since \( \int 17 \sin^2(x) \cos^3(x) \, dx \) has an odd power of \( \cos(x) \), we will convert all but one power to sines.
We know that:
\[ \cos^2(x) = 1 - \sin^2(x) \]
### Step 2
Making this substitution, the integral
\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]
gives us:
\[ \int 17 \sin^2(x) \cos(x) (1 - \sin^2(x)) \, dx = \int 17 \sin^2(x) \cos(x) \, dx - \int 17 \sin^4(x) \cos(x) \, dx \]
### Step 3
Since \( \cos(x) \) is the derivative of \( \sin(x) \), the integral:
\[ \int 17 \sin^2(x) \cos(x) \, dx \]
can be done by substituting
\[ u = \sin(x) \]
Thus,
\[ du = \cos(x) \, dx \]
### Step 4
With the substitution \( u = \sin(x) \), we get:
\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \int u^2 \, du \]
which integrates to:
\[ 17 \left( \frac{u^3}{3} \right) + C \]
Substituting back in to get the answer in terms of \( \sin(x) \), we have:
\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \left( \frac{\sin^3(x)}{3} \right) + C \]
Therefore, the solution to the integral is:
\[ 17 \left( \frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} \right) + C \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc48d8396-9e5a-409f-8697-668a3466d8cb%2F373ba6c9-9cb9-4f25-9fac-ec09d3021122%2Fmjffa8o.jpeg&w=3840&q=75)
Transcribed Image Text:# Evaluating the Integral Step-by-Step
### Step-by-Step Guide:
We aim to evaluate the integral:
\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]
### Step 1
Since \( \int 17 \sin^2(x) \cos^3(x) \, dx \) has an odd power of \( \cos(x) \), we will convert all but one power to sines.
We know that:
\[ \cos^2(x) = 1 - \sin^2(x) \]
### Step 2
Making this substitution, the integral
\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]
gives us:
\[ \int 17 \sin^2(x) \cos(x) (1 - \sin^2(x)) \, dx = \int 17 \sin^2(x) \cos(x) \, dx - \int 17 \sin^4(x) \cos(x) \, dx \]
### Step 3
Since \( \cos(x) \) is the derivative of \( \sin(x) \), the integral:
\[ \int 17 \sin^2(x) \cos(x) \, dx \]
can be done by substituting
\[ u = \sin(x) \]
Thus,
\[ du = \cos(x) \, dx \]
### Step 4
With the substitution \( u = \sin(x) \), we get:
\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \int u^2 \, du \]
which integrates to:
\[ 17 \left( \frac{u^3}{3} \right) + C \]
Substituting back in to get the answer in terms of \( \sin(x) \), we have:
\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \left( \frac{\sin^3(x)}{3} \right) + C \]
Therefore, the solution to the integral is:
\[ 17 \left( \frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} \right) + C \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning