Evaluate the integral. 17 sin?(x) cos (x) dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please solve the image

# Evaluating the Integral Step-by-Step

### Step-by-Step Guide:
We aim to evaluate the integral:

\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]

### Step 1
Since \( \int 17 \sin^2(x) \cos^3(x) \, dx \) has an odd power of \( \cos(x) \), we will convert all but one power to sines.

We know that:

\[ \cos^2(x) = 1 - \sin^2(x) \]

### Step 2
Making this substitution, the integral

\[ \int 17 \sin^2(x) \cos^3(x) \, dx \]

gives us:

\[ \int 17 \sin^2(x) \cos(x) (1 - \sin^2(x)) \, dx = \int 17 \sin^2(x) \cos(x) \, dx - \int 17 \sin^4(x) \cos(x) \, dx \]

### Step 3
Since \( \cos(x) \) is the derivative of \( \sin(x) \), the integral:

\[ \int 17 \sin^2(x) \cos(x) \, dx \] 

can be done by substituting

\[ u = \sin(x) \]

Thus, 

\[ du = \cos(x) \, dx \]

### Step 4
With the substitution \( u = \sin(x) \), we get:

\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \int u^2 \, du \]

which integrates to:

\[ 17 \left( \frac{u^3}{3} \right) + C \]

Substituting back in to get the answer in terms of \( \sin(x) \), we have:

\[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \left( \frac{\sin^3(x)}{3} \right) + C \]

Therefore, the solution to the integral is:

\[ 17 \left( \frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} \right) + C \]
Transcribed Image Text:# Evaluating the Integral Step-by-Step ### Step-by-Step Guide: We aim to evaluate the integral: \[ \int 17 \sin^2(x) \cos^3(x) \, dx \] ### Step 1 Since \( \int 17 \sin^2(x) \cos^3(x) \, dx \) has an odd power of \( \cos(x) \), we will convert all but one power to sines. We know that: \[ \cos^2(x) = 1 - \sin^2(x) \] ### Step 2 Making this substitution, the integral \[ \int 17 \sin^2(x) \cos^3(x) \, dx \] gives us: \[ \int 17 \sin^2(x) \cos(x) (1 - \sin^2(x)) \, dx = \int 17 \sin^2(x) \cos(x) \, dx - \int 17 \sin^4(x) \cos(x) \, dx \] ### Step 3 Since \( \cos(x) \) is the derivative of \( \sin(x) \), the integral: \[ \int 17 \sin^2(x) \cos(x) \, dx \] can be done by substituting \[ u = \sin(x) \] Thus, \[ du = \cos(x) \, dx \] ### Step 4 With the substitution \( u = \sin(x) \), we get: \[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \int u^2 \, du \] which integrates to: \[ 17 \left( \frac{u^3}{3} \right) + C \] Substituting back in to get the answer in terms of \( \sin(x) \), we have: \[ \int 17 \sin^2(x) \cos(x) \, dx = 17 \left( \frac{\sin^3(x)}{3} \right) + C \] Therefore, the solution to the integral is: \[ 17 \left( \frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} \right) + C \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Research Ethics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning