Evaluate the integral: Hint: Integrate by parts. Olet u=x², du=2xdx, dv=cosxdx, v= sinx [x²cosxdx = x²sinx- =x²sinx + 2cosx + C x2sinx – =x²sinx + 2xcosx- -√21 Olet u=x², du=2xdx, dv=cosxdx, v= sinx [x²cosxdx=x² 2sinx– √21 let u=2x, du = 2dx, dv=sinxdx, v = - cosx -f2vsinxdx= x2sinx – :-[2vsi 2xsinxdx fro 2xsinxdx=x²sinx-(-2xcos) - -√2co =x²sinx + 2xcos.x - -√2 x² cos x dx. 2xsinxdx Olet u=x², du=2xdx, dv=cosxdx, v= sinx [x²cosxdx=x²-sinx- let u=2x, du=2dx, dv=sinxdx, v= - cosx [x²cosxdx=x²sinx- =x²sinx - 2cosx + C 2xsinxdx -[(-2veces) -/- 2cosite] 2cosxdx 2cosxdx=x²sinx + 2xcosx – 2sinx + C =x2sinx= 1-4 cost + — Cosr+C 12 2xsinxdx -[(-2vcos) - 1-2cc Olet u=x², du=2xdx, dv=cosxdx, v= sinx x-f2vsin 2cosxdx=x²sinx + 2xcosx + 2sinx + C xsin.xdx Olet u=cosx, du= - sinxdx, dv=x²dx, v=x³/3 +3 [x²cosxdx= -—-cost-/=/(- x3 3 3 2cosxdx (- sinx) dx

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter1: Fundamental Concepts Of Algebra
Section1.2: Exponents And Radicals
Problem 20E
icon
Related questions
Question

Can someone help me solve this problem with all steps included than you.

Evaluate the integral:
Hint: Integrate by parts.
Olet u=x², du=2xdx, dv=cosxdx, v = sinx
[x²cosxdx=x²sinx-
- [2xsinxdx
=x²sinx + 2cosx + C
x2sinx— -√2x5
O let u=x², du=2xdx, dv=cosxdx, v= sinx
S.x²cosxdx=x²sinx-
let u=2x, du 2dx, dv=sinxdx, v= - cos.x
=x²sinx+ 2xcos.x -
rsinx—
2xsinxdx=x²sinx-
√2co
O let u=x², du=2xdx, dv=cosxdx, v = sinx
[x2²cosxdx=x²sinx- 2xsinxdx
let u=2x, du =2dx, dv-sinxdx, v=-cos.x
=x²sinx + 2xcosx-
fre
-3
3
[x²cosxdx=
x² cos x dx.
-f2xsinxdx:
2xsinxdx=x²sinx- (-2xcos) - S-200
2cosxdx
√20
-COS.X +
2xsinxdx
₁-[(- - 2xcos) -
-S-²
2cosxdx=x²sinx + 2xcosx-2sinx + C
O let u=x², du=2xdx, dv=cosxdx, v = sinx
[x²cosxdx=x²³sinx-
=x²sinx-2cosx + C
-4
Olet u = cosx, du = sinxdx, dv=x²dx, v=x³/3
x3
= --COST-1 = (-
3
12
-cosr+C
2cosxdx=x²sinx + 2xcosx + 2sinx + C
2xsinxdx
2cosxdx
(- sinx) dx
Transcribed Image Text:Evaluate the integral: Hint: Integrate by parts. Olet u=x², du=2xdx, dv=cosxdx, v = sinx [x²cosxdx=x²sinx- - [2xsinxdx =x²sinx + 2cosx + C x2sinx— -√2x5 O let u=x², du=2xdx, dv=cosxdx, v= sinx S.x²cosxdx=x²sinx- let u=2x, du 2dx, dv=sinxdx, v= - cos.x =x²sinx+ 2xcos.x - rsinx— 2xsinxdx=x²sinx- √2co O let u=x², du=2xdx, dv=cosxdx, v = sinx [x2²cosxdx=x²sinx- 2xsinxdx let u=2x, du =2dx, dv-sinxdx, v=-cos.x =x²sinx + 2xcosx- fre -3 3 [x²cosxdx= x² cos x dx. -f2xsinxdx: 2xsinxdx=x²sinx- (-2xcos) - S-200 2cosxdx √20 -COS.X + 2xsinxdx ₁-[(- - 2xcos) - -S-² 2cosxdx=x²sinx + 2xcosx-2sinx + C O let u=x², du=2xdx, dv=cosxdx, v = sinx [x²cosxdx=x²³sinx- =x²sinx-2cosx + C -4 Olet u = cosx, du = sinxdx, dv=x²dx, v=x³/3 x3 = --COST-1 = (- 3 12 -cosr+C 2cosxdx=x²sinx + 2xcosx + 2sinx + C 2xsinxdx 2cosxdx (- sinx) dx
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer