Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Evaluate the Improper Integral**
\[ \int_{-\infty}^{e} 11e^{-x} \, dx \]
**Explanation:**
The task is to find the value of the improper integral given above. An improper integral is one where either the interval of integration is infinite, or the function has an infinite discontinuity.
The integral \(\int_{-\infty}^{e} 11e^{-x} \, dx\) involves an exponential decay function \(11e^{-x}\) integrated over an infinite range from \(-\infty\) to \(e\).
To evaluate this, you will typically use limits to handle the improper nature of the integral at \(-\infty\). It requires evaluating the limit:
\[ \lim_{a \to -\infty} \int_{a}^{e} 11e^{-x} \, dx. \]
This process involves finding the antiderivative of \(11e^{-x}\), which is \(-11e^{-x}\), and then applying the limits of integration to find the final value.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb7c72b9f-0930-4803-9715-bedcb9f3be97%2Fadb79640-6682-4c7e-93b1-5f2a81206328%2F0ivghrf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Evaluate the Improper Integral**
\[ \int_{-\infty}^{e} 11e^{-x} \, dx \]
**Explanation:**
The task is to find the value of the improper integral given above. An improper integral is one where either the interval of integration is infinite, or the function has an infinite discontinuity.
The integral \(\int_{-\infty}^{e} 11e^{-x} \, dx\) involves an exponential decay function \(11e^{-x}\) integrated over an infinite range from \(-\infty\) to \(e\).
To evaluate this, you will typically use limits to handle the improper nature of the integral at \(-\infty\). It requires evaluating the limit:
\[ \lim_{a \to -\infty} \int_{a}^{e} 11e^{-x} \, dx. \]
This process involves finding the antiderivative of \(11e^{-x}\), which is \(-11e^{-x}\), and then applying the limits of integration to find the final value.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning