Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
I need help with this homework problem please provide steps and details
on how you got the answer so I can learn and compare my work
![### Example Problem: Evaluating a Limit
**Evaluate the given limit, and justify each step by indicating the limit law(s) used.**
\[ \lim_{{x \to -2}} \frac{\sqrt{x^2 + 5} - 3}{x + 2} \]
---
1. **Identify the Form of the Limit:**
- First, substitute \( x = -2 \) into the expression to check the form:
\[
\frac{\sqrt{(-2)^2 + 5} - 3}{-2 + 2} = \frac{\sqrt{4 + 5} - 3}{0} = \frac{\sqrt{9} - 3}{0} = \frac{3 - 3}{0} = \frac{0}{0}
\]
- Since the limit results in the indeterminate form \(\frac{0}{0}\), we need further simplification.
2. **Simplify the Expression:**
- To simplify, multiply the numerator and the denominator by the conjugate of the numerator:
\[
\frac{\sqrt{x^2 + 5} - 3}{x + 2} \cdot \frac{\sqrt{x^2 + 5} + 3}{\sqrt{x^2 + 5} + 3} = \frac{(\sqrt{x^2 + 5} - 3)(\sqrt{x^2 + 5} + 3)}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\]
- The numerator simplifies using the difference of squares:
\[
\frac{(x^2 + 5) - 9}{(x + 2)(\sqrt{x^2 + 5} + 3)} = \frac{x^2 - 4}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\]
- The numerator can be factored further:
\[
x^2 - 4 = (x - 2)(x + 2)
\]
- Substitute the factored numerator:
\[
\frac{(x - 2)(x + 2)}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff62d5ca7-5439-4cfe-bb83-29d1381eaedb%2F9b6ff0aa-2107-49f3-a240-ea666a77e257%2Fwjjjqr8s_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Example Problem: Evaluating a Limit
**Evaluate the given limit, and justify each step by indicating the limit law(s) used.**
\[ \lim_{{x \to -2}} \frac{\sqrt{x^2 + 5} - 3}{x + 2} \]
---
1. **Identify the Form of the Limit:**
- First, substitute \( x = -2 \) into the expression to check the form:
\[
\frac{\sqrt{(-2)^2 + 5} - 3}{-2 + 2} = \frac{\sqrt{4 + 5} - 3}{0} = \frac{\sqrt{9} - 3}{0} = \frac{3 - 3}{0} = \frac{0}{0}
\]
- Since the limit results in the indeterminate form \(\frac{0}{0}\), we need further simplification.
2. **Simplify the Expression:**
- To simplify, multiply the numerator and the denominator by the conjugate of the numerator:
\[
\frac{\sqrt{x^2 + 5} - 3}{x + 2} \cdot \frac{\sqrt{x^2 + 5} + 3}{\sqrt{x^2 + 5} + 3} = \frac{(\sqrt{x^2 + 5} - 3)(\sqrt{x^2 + 5} + 3)}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\]
- The numerator simplifies using the difference of squares:
\[
\frac{(x^2 + 5) - 9}{(x + 2)(\sqrt{x^2 + 5} + 3)} = \frac{x^2 - 4}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\]
- The numerator can be factored further:
\[
x^2 - 4 = (x - 2)(x + 2)
\]
- Substitute the factored numerator:
\[
\frac{(x - 2)(x + 2)}{(x + 2)(\sqrt{x^2 + 5} + 3)}
\
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning