Evaluate the following integral. x/2 SSISK ² 24p cos ³¶p dep d0 dp 3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
### Evaluating a Triple Integral

To evaluate the following integral:

\[
\int_{0}^{1}\int_{0}^{\pi}\int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \, d\theta \, d\rho
\]

follow these steps:

1. **Integrate with respect to \(\phi\):**
\[
\begin{aligned}
I &= \int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \\
 &= \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi.
\end{aligned}
\]

2. **Integrate with respect to \(\theta\):**
\[
\begin{aligned}
I &= \int_{0}^{\pi} \left( \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi \right) d\theta.
\]

3. **Integrate with respect to \(\rho\):**
\[
\begin{aligned}
I &= \int_{0}^{1} \left( \int_{0}^{\pi} \left( \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi \right) d\theta \right) d\rho.
\]

### Final Answer
Simplify the integrals step by step, ensuring proper application of trigonometric identities and integration techniques.

\[
\int_{0}^{1}\int_{0}^{\pi}\int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \, d\theta \, d\rho = \boxed{\textrm{(Exact Answer Here)}}
\]

*(Type an exact answer.)*

This section should be completed by substituting the definite integral values and calculating the exact solution.
Transcribed Image Text:### Evaluating a Triple Integral To evaluate the following integral: \[ \int_{0}^{1}\int_{0}^{\pi}\int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \, d\theta \, d\rho \] follow these steps: 1. **Integrate with respect to \(\phi\):** \[ \begin{aligned} I &= \int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \\ &= \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi. \end{aligned} \] 2. **Integrate with respect to \(\theta\):** \[ \begin{aligned} I &= \int_{0}^{\pi} \left( \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi \right) d\theta. \] 3. **Integrate with respect to \(\rho\):** \[ \begin{aligned} I &= \int_{0}^{1} \left( \int_{0}^{\pi} \left( \int_{\pi/4}^{\pi/2} 24\rho (\cos\phi)^3 \, d\phi \right) d\theta \right) d\rho. \] ### Final Answer Simplify the integrals step by step, ensuring proper application of trigonometric identities and integration techniques. \[ \int_{0}^{1}\int_{0}^{\pi}\int_{\pi/4}^{\pi/2} 24\rho \cos^3\phi \, d\phi \, d\theta \, d\rho = \boxed{\textrm{(Exact Answer Here)}} \] *(Type an exact answer.)* This section should be completed by substituting the definite integral values and calculating the exact solution.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning