Evaluate the following double integral over the region R. 2 ſſ⁹(x³ – y5) ²dA; R = {(x,y): 0≤x≤ 1, − 1 ≤y≤1} R

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Title: Evaluating a Double Integral Over a Defined Region**

**Problem Statement:**

Evaluate the following double integral over the region \( R \):

\[ \iint\limits_R 9 \left( x^5 - y^5 \right)^2 \, dA \]

where \( R = \{(x, y) : 0 \leq x \leq 1, -1 \leq y \leq 1\} \).

**Solution Outline:**

To solve this double integral, we will follow these steps:

1. **Identify the Region \( R \)**:
   The region \( R \) is defined as:
   \[
   R = \{(x, y) : 0 \leq x \leq 1, -1 \leq y \leq 1\}
   \]
   It signifies a rectangular region in the \( xy \)-plane from \( x = 0 \) to \( x = 1 \) and from \( y = -1 \) to \( y = 1 \).

2. **Set Up the Integral**:
   Convert the given double integral into two iterated integrals.

3. **Evaluate the Integral**:
   Compute the integral in terms of \( x \) and \( y \).

### Step-by-Step Solution:

**Integral Setup:**

Given the region \( R \), we can set up the integral as follows:

\[
\iint\limits_R 9 \left( x^5 - y^5 \right)^2 \, dA = \int_{0}^{1} \int_{-1}^{1} 9 \left( x^5 - y^5 \right)^2 \, dy \, dx
\]

**Evaluating the Inner Integral:**

Evaluating the inner integral with respect to \( y \):

\[
\int_{-1}^{1} 9 \left( x^5 - y^5 \right)^2 \, dy
\]

Expanding \( \left( x^5 - y^5 \right)^2 \):

\[
\left( x^5 - y^5 \right)^2 = x^{10} - 2x^5y^5 + y^{10}
\]

Thus, the inner integral becomes:

\[
\int_{-1}^{1} 9 \left( x^{10
Transcribed Image Text:**Title: Evaluating a Double Integral Over a Defined Region** **Problem Statement:** Evaluate the following double integral over the region \( R \): \[ \iint\limits_R 9 \left( x^5 - y^5 \right)^2 \, dA \] where \( R = \{(x, y) : 0 \leq x \leq 1, -1 \leq y \leq 1\} \). **Solution Outline:** To solve this double integral, we will follow these steps: 1. **Identify the Region \( R \)**: The region \( R \) is defined as: \[ R = \{(x, y) : 0 \leq x \leq 1, -1 \leq y \leq 1\} \] It signifies a rectangular region in the \( xy \)-plane from \( x = 0 \) to \( x = 1 \) and from \( y = -1 \) to \( y = 1 \). 2. **Set Up the Integral**: Convert the given double integral into two iterated integrals. 3. **Evaluate the Integral**: Compute the integral in terms of \( x \) and \( y \). ### Step-by-Step Solution: **Integral Setup:** Given the region \( R \), we can set up the integral as follows: \[ \iint\limits_R 9 \left( x^5 - y^5 \right)^2 \, dA = \int_{0}^{1} \int_{-1}^{1} 9 \left( x^5 - y^5 \right)^2 \, dy \, dx \] **Evaluating the Inner Integral:** Evaluating the inner integral with respect to \( y \): \[ \int_{-1}^{1} 9 \left( x^5 - y^5 \right)^2 \, dy \] Expanding \( \left( x^5 - y^5 \right)^2 \): \[ \left( x^5 - y^5 \right)^2 = x^{10} - 2x^5y^5 + y^{10} \] Thus, the inner integral becomes: \[ \int_{-1}^{1} 9 \left( x^{10
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,