Evaluate the definite integral by the limit definition. Step 1 J4 5 dx To find the definite integral 5 dx by the limit definition, divide the interval [4, 9] into n subintervals. Step 2 Then the width of each interval is b-a Ax = Note that ||A||- → n J4 5 n 9-4 n O as n→ 00.
Evaluate the definite integral by the limit definition. Step 1 J4 5 dx To find the definite integral 5 dx by the limit definition, divide the interval [4, 9] into n subintervals. Step 2 Then the width of each interval is b-a Ax = Note that ||A||- → n J4 5 n 9-4 n O as n→ 00.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![Evaluate the definite integral by the limit definition.
\[
\int_{4}^{9} 5 \, dx
\]
**Step 1**
To find the definite integral \(\int_{4}^{9} 5 \, dx\) by the limit definition, divide the interval \([4, 9]\) into \(n\) subintervals.
The width of each interval is
\[
\Delta x = \frac{b-a}{n} = \frac{9-4}{n} = \frac{5}{n}.
\]
Note that \(\|\Delta\| \rightarrow 0\) as \(n \rightarrow \infty\).
**Step 2**
Choose \(c_i\) as the right endpoint of each subinterval. Then
\[
c_i = a + i(\Delta x) = 4 + i\left(\frac{5}{n}\right).
\]
So the definite integral is given by
\[
\int_{4}^{9} 5 \, dx = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} f\left(4 + \frac{5i}{n}\right) \left(\frac{5}{n}\right)
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(5\right)\left(\frac{5}{n}\right)
\]
\[
= \lim_{n \to \infty} \left( \frac{5}{n} \right) \sum_{i=1}^{n} 5
\]
\[
= \lim_{n \to \infty} \left(\frac{25}{n}\right) \sum_{i=1}^{n} 1
\]
\[
= \lim_{n \to \infty} 25
\]
\[
= 25.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ba58da1-aa6c-4b34-ac65-53856b97f0bf%2F5d27609b-05b2-40f3-86d9-62d6ddc887ae%2Fnw515qv_processed.png&w=3840&q=75)
Transcribed Image Text:Evaluate the definite integral by the limit definition.
\[
\int_{4}^{9} 5 \, dx
\]
**Step 1**
To find the definite integral \(\int_{4}^{9} 5 \, dx\) by the limit definition, divide the interval \([4, 9]\) into \(n\) subintervals.
The width of each interval is
\[
\Delta x = \frac{b-a}{n} = \frac{9-4}{n} = \frac{5}{n}.
\]
Note that \(\|\Delta\| \rightarrow 0\) as \(n \rightarrow \infty\).
**Step 2**
Choose \(c_i\) as the right endpoint of each subinterval. Then
\[
c_i = a + i(\Delta x) = 4 + i\left(\frac{5}{n}\right).
\]
So the definite integral is given by
\[
\int_{4}^{9} 5 \, dx = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} f\left(4 + \frac{5i}{n}\right) \left(\frac{5}{n}\right)
\]
\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(5\right)\left(\frac{5}{n}\right)
\]
\[
= \lim_{n \to \infty} \left( \frac{5}{n} \right) \sum_{i=1}^{n} 5
\]
\[
= \lim_{n \to \infty} \left(\frac{25}{n}\right) \sum_{i=1}^{n} 1
\]
\[
= \lim_{n \to \infty} 25
\]
\[
= 25.
\]
Expert Solution

Step 1: Following information is given.
Step by step
Solved in 4 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning