Evaluate || (x + y + z)dS, where S is the surface defined parametrically by S ", v) (2u + v)i+ (u – 2v)j+ (u+ 3v)k for 0 < u < 1, and 0 < v < 2. -
Evaluate || (x + y + z)dS, where S is the surface defined parametrically by S ", v) (2u + v)i+ (u – 2v)j+ (u+ 3v)k for 0 < u < 1, and 0 < v < 2. -
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Problem 292: Surface Integral Evaluation
Evaluate the surface integral
\[
\iint_S (x + y + z) \, dS
\]
where \( S \) is the surface defined parametrically by
\[
\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}
\]
for \( 0 \leq u \leq 1 \), and \( 0 \leq v \leq 2 \).
### Key Concepts
1. **Surface Integral:** Surface integrals extend the concept of integrals to functions over surfaces. In this problem, we need to integrate the function \( x + y + z \) over the surface \( S \).
2. **Parametric Surface:** The surface \( S \) is given parametrically with the vector function \(\mathbf{R}(u, v)\). The parameters \( u \) and \( v \) range over the intervals \( 0 \leq u \leq 1 \) and \( 0 \leq v \leq 2 \).
3. **Vector Notation:** \(\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}\) describes a surface in 3D space where \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) are the standard unit vectors in the \( x \)-, \( y \)-, and \( z \)- directions, respectively.
### Approach to Solution
To solve this problem, follow these general steps:
1. **Express \( x \), \( y \), and \( z \) in terms of \( u \) and \( v \).**
- \( x = 2u + v \)
- \( y = u - 2v \)
- \( z = u + 3v \)
2. **Compute the appropriate partial derivatives \( \partial \mathbf{R} / \partial u \) and \( \partial \mathbf{R} / \partial v \).**
- \(\frac{\partial \mathbf{R}}{\partial u} = 2\mathbf{i} + \mathbf](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F444dbf3b-270a-42aa-8883-ea946de0a843%2Fe345c4f3-e39f-4851-a422-803a36aff206%2Fh9t6g7.png&w=3840&q=75)
Transcribed Image Text:### Problem 292: Surface Integral Evaluation
Evaluate the surface integral
\[
\iint_S (x + y + z) \, dS
\]
where \( S \) is the surface defined parametrically by
\[
\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}
\]
for \( 0 \leq u \leq 1 \), and \( 0 \leq v \leq 2 \).
### Key Concepts
1. **Surface Integral:** Surface integrals extend the concept of integrals to functions over surfaces. In this problem, we need to integrate the function \( x + y + z \) over the surface \( S \).
2. **Parametric Surface:** The surface \( S \) is given parametrically with the vector function \(\mathbf{R}(u, v)\). The parameters \( u \) and \( v \) range over the intervals \( 0 \leq u \leq 1 \) and \( 0 \leq v \leq 2 \).
3. **Vector Notation:** \(\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}\) describes a surface in 3D space where \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) are the standard unit vectors in the \( x \)-, \( y \)-, and \( z \)- directions, respectively.
### Approach to Solution
To solve this problem, follow these general steps:
1. **Express \( x \), \( y \), and \( z \) in terms of \( u \) and \( v \).**
- \( x = 2u + v \)
- \( y = u - 2v \)
- \( z = u + 3v \)
2. **Compute the appropriate partial derivatives \( \partial \mathbf{R} / \partial u \) and \( \partial \mathbf{R} / \partial v \).**
- \(\frac{\partial \mathbf{R}}{\partial u} = 2\mathbf{i} + \mathbf
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)