Evaluate || (x + y + z)dS, where S is the surface defined parametrically by S ", v) (2u + v)i+ (u – 2v)j+ (u+ 3v)k for 0 < u < 1, and 0 < v < 2. -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Problem 292: Surface Integral Evaluation

Evaluate the surface integral 

\[
\iint_S (x + y + z) \, dS
\]

where \( S \) is the surface defined parametrically by 

\[
\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}
\]

for \( 0 \leq u \leq 1 \), and \( 0 \leq v \leq 2 \).

### Key Concepts

1. **Surface Integral:** Surface integrals extend the concept of integrals to functions over surfaces. In this problem, we need to integrate the function \( x + y + z \) over the surface \( S \).

2. **Parametric Surface:** The surface \( S \) is given parametrically with the vector function \(\mathbf{R}(u, v)\). The parameters \( u \) and \( v \) range over the intervals \( 0 \leq u \leq 1 \) and \( 0 \leq v \leq 2 \).

3. **Vector Notation:** \(\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}\) describes a surface in 3D space where \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) are the standard unit vectors in the \( x \)-, \( y \)-, and \( z \)- directions, respectively.

### Approach to Solution

To solve this problem, follow these general steps:
1. **Express \( x \), \( y \), and \( z \) in terms of \( u \) and \( v \).**
    - \( x = 2u + v \)
    - \( y = u - 2v \)
    - \( z = u + 3v \)
    
2. **Compute the appropriate partial derivatives \( \partial \mathbf{R} / \partial u \) and \( \partial \mathbf{R} / \partial v \).**
    - \(\frac{\partial \mathbf{R}}{\partial u} = 2\mathbf{i} + \mathbf
Transcribed Image Text:### Problem 292: Surface Integral Evaluation Evaluate the surface integral \[ \iint_S (x + y + z) \, dS \] where \( S \) is the surface defined parametrically by \[ \mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k} \] for \( 0 \leq u \leq 1 \), and \( 0 \leq v \leq 2 \). ### Key Concepts 1. **Surface Integral:** Surface integrals extend the concept of integrals to functions over surfaces. In this problem, we need to integrate the function \( x + y + z \) over the surface \( S \). 2. **Parametric Surface:** The surface \( S \) is given parametrically with the vector function \(\mathbf{R}(u, v)\). The parameters \( u \) and \( v \) range over the intervals \( 0 \leq u \leq 1 \) and \( 0 \leq v \leq 2 \). 3. **Vector Notation:** \(\mathbf{R}(u, v) = (2u + v)\mathbf{i} + (u - 2v)\mathbf{j} + (u + 3v)\mathbf{k}\) describes a surface in 3D space where \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\) are the standard unit vectors in the \( x \)-, \( y \)-, and \( z \)- directions, respectively. ### Approach to Solution To solve this problem, follow these general steps: 1. **Express \( x \), \( y \), and \( z \) in terms of \( u \) and \( v \).** - \( x = 2u + v \) - \( y = u - 2v \) - \( z = u + 3v \) 2. **Compute the appropriate partial derivatives \( \partial \mathbf{R} / \partial u \) and \( \partial \mathbf{R} / \partial v \).** - \(\frac{\partial \mathbf{R}}{\partial u} = 2\mathbf{i} + \mathbf
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,