Evaluate JJJB (z sin(x) + y² )dV 1 B = {(x, y, z) |— — — n ≤ x ≤ 1/2 T, 3 ≤ y ≤ 9,3 ≤ z ≤ 8} . 3 Round your answer to 4 decimal places.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

5.4.10

### Evaluating a Triple Integral

**Problem Statement:**

Evaluate the triple integral:

\[
\iiint_B (z \sin(x) + y^2) \, dV
\]

where the region \(B\) is defined as:

\[
B = \{ (x, y, z) \mid -\frac{1}{3}\pi \leq x \leq \frac{1}{2} \pi, \, 3 \leq y \leq 9, \, 3 \leq z \leq 8 \}
\]

**Instructions:**

- **Objective:** Compute the value of the integral over the specified region.
- **Output:** Round your answer to 4 decimal places.

**Exploration of Variables:**

- The variable \(x\) is bounded between \(-\frac{1}{3}\pi\) and \(\frac{1}{2}\pi\).
- The variable \(y\) ranges from 3 to 9.
- The variable \(z\) ranges from 3 to 8.
Transcribed Image Text:### Evaluating a Triple Integral **Problem Statement:** Evaluate the triple integral: \[ \iiint_B (z \sin(x) + y^2) \, dV \] where the region \(B\) is defined as: \[ B = \{ (x, y, z) \mid -\frac{1}{3}\pi \leq x \leq \frac{1}{2} \pi, \, 3 \leq y \leq 9, \, 3 \leq z \leq 8 \} \] **Instructions:** - **Objective:** Compute the value of the integral over the specified region. - **Output:** Round your answer to 4 decimal places. **Exploration of Variables:** - The variable \(x\) is bounded between \(-\frac{1}{3}\pi\) and \(\frac{1}{2}\pi\). - The variable \(y\) ranges from 3 to 9. - The variable \(z\) ranges from 3 to 8.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,