Evaluate h(4), where h = go f. h(4) = 3 f(x)=√x²9, g(x) = 7x³ + 9

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

4

# Evaluating a Composite Function

To evaluate the given composite function \( h(4) \), where \( h = g \circ f \), follow these steps:

### Given Functions:
\[ f(x) = \sqrt[3]{x^2 - 9} \]
\[ g(x) = 7x^3 + 9 \]

### Objective:
Evaluate \( h(4) \).

### Steps:

1. **Find \( f(4) \):**
   Substitute \( x = 4 \) into the function \( f(x) = \sqrt[3]{x^2 - 9} \):
   \[
   f(4) = \sqrt[3]{4^2 - 9} = \sqrt[3]{16 - 9} = \sqrt[3]{7}
   \]

2. **Find \( g(f(4)) \):**
   Next, substitute \( f(4) \) into \( g(x) = 7x^3 + 9 \):
   \[
   g(f(4)) = g\left(\sqrt[3]{7}\right) = 7\left(\sqrt[3]{7}\right)^3 + 9
   \]
   Since \( \left(\sqrt[3]{7}\right)^3 = 7 \):
   \[
   g(f(4)) = 7 \times 7 + 9 = 49 + 9 = 58
   \]

Thus, the value of \( h(4) \) is:
\[
h(4) = 58
\]

### Conclusion:
By evaluating the composite function step-by-step, we found that \( h(4) = 58 \). This method can be applied to other composite functions to determine their values at specific points.
Transcribed Image Text:# Evaluating a Composite Function To evaluate the given composite function \( h(4) \), where \( h = g \circ f \), follow these steps: ### Given Functions: \[ f(x) = \sqrt[3]{x^2 - 9} \] \[ g(x) = 7x^3 + 9 \] ### Objective: Evaluate \( h(4) \). ### Steps: 1. **Find \( f(4) \):** Substitute \( x = 4 \) into the function \( f(x) = \sqrt[3]{x^2 - 9} \): \[ f(4) = \sqrt[3]{4^2 - 9} = \sqrt[3]{16 - 9} = \sqrt[3]{7} \] 2. **Find \( g(f(4)) \):** Next, substitute \( f(4) \) into \( g(x) = 7x^3 + 9 \): \[ g(f(4)) = g\left(\sqrt[3]{7}\right) = 7\left(\sqrt[3]{7}\right)^3 + 9 \] Since \( \left(\sqrt[3]{7}\right)^3 = 7 \): \[ g(f(4)) = 7 \times 7 + 9 = 49 + 9 = 58 \] Thus, the value of \( h(4) \) is: \[ h(4) = 58 \] ### Conclusion: By evaluating the composite function step-by-step, we found that \( h(4) = 58 \). This method can be applied to other composite functions to determine their values at specific points.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning