Evaluate f(x) = 7sin r 1 COS -X %3D at a /3. x =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
### Problem Statement

Evaluate the function \( f(x) = 7 \sin x - \cos \left(\frac{1}{2} x\right) \) at \( x = \frac{\pi}{3} \).

### Explanation

- **Function Definition**: The function \( f(x) \) is composed of two trigonometric components: \( 7 \sin x \) and \( -\cos \left(\frac{1}{2} x\right) \).
  - \( 7 \sin x \): This part multiplies the sine of \( x \) by 7.
  - \( -\cos \left(\frac{1}{2} x\right) \): This part finds the cosine of half of \( x \), then negates it.

- **Evaluation Point**: We need to evaluate this function specifically at \( x = \frac{\pi}{3} \).

### Steps to Solution

1. **Substitute** \( x = \frac{\pi}{3} \) into the equation:
    \[ f\left(\frac{\pi}{3}\right) = 7 \sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{1}{2} \cdot \frac{\pi}{3}\right) \]

2. **Calculate Trigonometric Values**:
    - \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\)
    - \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\)

3. **Substitute the Trigonometric Values**:
    \[ f\left(\frac{\pi}{3}\right) = 7 \left(\frac{\sqrt{3}}{2}\right) - \frac{\sqrt{3}}{2} \]

4. **Simplify**:
    \[ f\left(\frac{\pi}{3}\right) = \frac{7\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \]
    \[ f\left(\frac{\pi}{3}\right) = \frac{6\sqrt{3}}{2} \]
    \[ f\left(\frac{\pi}{3}\right) = 3\sqrt{3} \
Transcribed Image Text:### Problem Statement Evaluate the function \( f(x) = 7 \sin x - \cos \left(\frac{1}{2} x\right) \) at \( x = \frac{\pi}{3} \). ### Explanation - **Function Definition**: The function \( f(x) \) is composed of two trigonometric components: \( 7 \sin x \) and \( -\cos \left(\frac{1}{2} x\right) \). - \( 7 \sin x \): This part multiplies the sine of \( x \) by 7. - \( -\cos \left(\frac{1}{2} x\right) \): This part finds the cosine of half of \( x \), then negates it. - **Evaluation Point**: We need to evaluate this function specifically at \( x = \frac{\pi}{3} \). ### Steps to Solution 1. **Substitute** \( x = \frac{\pi}{3} \) into the equation: \[ f\left(\frac{\pi}{3}\right) = 7 \sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{1}{2} \cdot \frac{\pi}{3}\right) \] 2. **Calculate Trigonometric Values**: - \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\) - \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\) 3. **Substitute the Trigonometric Values**: \[ f\left(\frac{\pi}{3}\right) = 7 \left(\frac{\sqrt{3}}{2}\right) - \frac{\sqrt{3}}{2} \] 4. **Simplify**: \[ f\left(\frac{\pi}{3}\right) = \frac{7\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \] \[ f\left(\frac{\pi}{3}\right) = \frac{6\sqrt{3}}{2} \] \[ f\left(\frac{\pi}{3}\right) = 3\sqrt{3} \
Expert Solution
Step 1

Given

fx=7sinx-cos12x

To evaluate the value of function at x=π3 put this value in fx

fx=7sinx-cos12x

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning