Evaluate e 1 5x + 4 X dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Evaluate the following definite integral:**

\[ \int_{1}^{e} \left( 5x + \frac{4}{x} \right) dx \]

This integral involves the summation of two functions, \( 5x \) and \( \frac{4}{x} \), integrated with respect to \( x \) from 1 to \( e \). Here's a step-by-step explanation to solve this integral:

1. **Separate the integral into two parts:**

\[ \int_{1}^{e} \left( 5x + \frac{4}{x} \right) dx = \int_{1}^{e} 5x \, dx + \int_{1}^{e} \frac{4}{x} \, dx \]

2. **Evaluate each part separately:**

   - For the first part \( \int_{1}^{e} 5x \, dx \):

     Integrate \( 5x \) with respect to \( x \):

     \[ \int 5x \, dx = \frac{5x^2}{2} \]

     Evaluate this at the bounds \( 1 \) and \( e \):

     \[ \left[ \frac{5x^2}{2} \right]_{1}^{e} = \frac{5e^2}{2} - \frac{5(1)^2}{2} = \frac{5e^2}{2} - \frac{5}{2} \]

   - For the second part \( \int_{1}^{e} \frac{4}{x} \, dx \):

     Integrate \( \frac{4}{x} \) with respect to \( x \):

     \[ \int \frac{4}{x} \, dx = 4 \ln|x| \]

     Evaluate this at the bounds \( 1 \) and \( e \):

     \[ \left[ 4 \ln|x| \right]_{1}^{e} = 4 \ln(e) - 4 \ln(1) = 4 \cdot 1 - 4 \cdot 0 = 4 \]

3. **Combine the results from the two parts:**

   \[ \frac{5e^2}{2} - \frac{5}{2} + 4 \]

Therefore,
Transcribed Image Text:**Evaluate the following definite integral:** \[ \int_{1}^{e} \left( 5x + \frac{4}{x} \right) dx \] This integral involves the summation of two functions, \( 5x \) and \( \frac{4}{x} \), integrated with respect to \( x \) from 1 to \( e \). Here's a step-by-step explanation to solve this integral: 1. **Separate the integral into two parts:** \[ \int_{1}^{e} \left( 5x + \frac{4}{x} \right) dx = \int_{1}^{e} 5x \, dx + \int_{1}^{e} \frac{4}{x} \, dx \] 2. **Evaluate each part separately:** - For the first part \( \int_{1}^{e} 5x \, dx \): Integrate \( 5x \) with respect to \( x \): \[ \int 5x \, dx = \frac{5x^2}{2} \] Evaluate this at the bounds \( 1 \) and \( e \): \[ \left[ \frac{5x^2}{2} \right]_{1}^{e} = \frac{5e^2}{2} - \frac{5(1)^2}{2} = \frac{5e^2}{2} - \frac{5}{2} \] - For the second part \( \int_{1}^{e} \frac{4}{x} \, dx \): Integrate \( \frac{4}{x} \) with respect to \( x \): \[ \int \frac{4}{x} \, dx = 4 \ln|x| \] Evaluate this at the bounds \( 1 \) and \( e \): \[ \left[ 4 \ln|x| \right]_{1}^{e} = 4 \ln(e) - 4 \ln(1) = 4 \cdot 1 - 4 \cdot 0 = 4 \] 3. **Combine the results from the two parts:** \[ \frac{5e^2}{2} - \frac{5}{2} + 4 \] Therefore,
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning