Evaluate Answer: dt t² + t-30 S₁

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

I have been doing this question and I am lost as there is still something else that need to do to get the final answer,

can you help me.

**Evaluate the Integral**

Given the integral:

\[
\int \frac{dt}{t^2 + t - 30}
\]

**Answer:**

[Provide space here for students to enter their response]
Transcribed Image Text:**Evaluate the Integral** Given the integral: \[ \int \frac{dt}{t^2 + t - 30} \] **Answer:** [Provide space here for students to enter their response]
**Question 8: Evaluate**

\[
\int \frac{dt}{t^2 + t - 30}
\]

Rewrite the integrand:

\[
\frac{1}{t^2 + t - 30}
\]

Factor the quadratic expression:

\[
t^2 + t - 30 = (t + 6)(t - 5)
\]

Set up partial fractions:

\[
\frac{1}{(t-5)(t+6)} = \frac{A}{t-5} + \frac{B}{t+6}
\]

Multiply through by the least common denominator (LCD):

\[
A(t+6) + B(t-5) = 1
\]

Substitute convenient values for \(t\):

For \(t = 5\):

\[
A(5+6) = 1 \Rightarrow 11A = 1 \Rightarrow A = \frac{1}{11}
\]

For \(t = -6\):

\[
B(-6-5) = 1 \Rightarrow -11B = 1 \Rightarrow B = -\frac{1}{11}
\]

Substitute back into the integral:

\[
\int \frac{1}{11(t-5)} dt - \int \frac{1}{11(t+6)} dt
\]

Integrate each term:

\[
\frac{1}{11} \ln |t-5| - \frac{1}{11} \ln |t+6| + C
\]

Use the properties of logarithms to combine:

\[
\frac{1}{11} \left( \ln |t-5| - \ln |t+6| \right) + C = \frac{1}{11} \ln \left| \frac{t-5}{t+6} \right| + C
\]
Transcribed Image Text:**Question 8: Evaluate** \[ \int \frac{dt}{t^2 + t - 30} \] Rewrite the integrand: \[ \frac{1}{t^2 + t - 30} \] Factor the quadratic expression: \[ t^2 + t - 30 = (t + 6)(t - 5) \] Set up partial fractions: \[ \frac{1}{(t-5)(t+6)} = \frac{A}{t-5} + \frac{B}{t+6} \] Multiply through by the least common denominator (LCD): \[ A(t+6) + B(t-5) = 1 \] Substitute convenient values for \(t\): For \(t = 5\): \[ A(5+6) = 1 \Rightarrow 11A = 1 \Rightarrow A = \frac{1}{11} \] For \(t = -6\): \[ B(-6-5) = 1 \Rightarrow -11B = 1 \Rightarrow B = -\frac{1}{11} \] Substitute back into the integral: \[ \int \frac{1}{11(t-5)} dt - \int \frac{1}{11(t+6)} dt \] Integrate each term: \[ \frac{1}{11} \ln |t-5| - \frac{1}{11} \ln |t+6| + C \] Use the properties of logarithms to combine: \[ \frac{1}{11} \left( \ln |t-5| - \ln |t+6| \right) + C = \frac{1}{11} \ln \left| \frac{t-5}{t+6} \right| + C \]
Expert Solution
Step 1

1t2+t-30dt

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning