Evaluate ₁ (42³ + 3y² + 2x)dV {(x, y, z) | 0≤x≤ 8,0 ≤ y ≤ 8,0 ≤ z ≤9}. B
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Triple Integral Evaluation over a Rectangular Prism**
**Problem Statement:**
Evaluate the triple integral:
\[
\iiint\limits_{B} (4x^3 + 3y^2 + 2x) \, dV
\]
where the region \( B \) is defined as:
\[
B = \{ (x, y, z) \mid 0 \leq x \leq 8, \, 0 \leq y \leq 8, \, 0 \leq z \leq 9 \}
\]
**Region Description:**
The region \( B \) is a rectangular prism (cuboid) in 3-dimensional space. Its dimensions are given by the intervals on \( x \), \( y \), and \( z \):
- \( x \) ranges from 0 to 8.
- \( y \) ranges from 0 to 8.
- \( z \) ranges from 0 to 9.
The volume \( dV \) represents an infinitesimally small volume element within this region.
**Integral Explanation:**
The given integral computes the accumulation of the function \( 4x^3 + 3y^2 + 2x \) over the entire volume of the rectangular prism \( B \). This involves integrating with respect to \( z \), \( y \), and \( x \), typically in that order, although the order can vary based on the problem requirements.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd20dfe5a-a4c1-4793-9f05-a80ad59a67d4%2F3d7b7af5-69a7-45ed-874d-6d3d2412e843%2Fc4v8cod_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Triple Integral Evaluation over a Rectangular Prism**
**Problem Statement:**
Evaluate the triple integral:
\[
\iiint\limits_{B} (4x^3 + 3y^2 + 2x) \, dV
\]
where the region \( B \) is defined as:
\[
B = \{ (x, y, z) \mid 0 \leq x \leq 8, \, 0 \leq y \leq 8, \, 0 \leq z \leq 9 \}
\]
**Region Description:**
The region \( B \) is a rectangular prism (cuboid) in 3-dimensional space. Its dimensions are given by the intervals on \( x \), \( y \), and \( z \):
- \( x \) ranges from 0 to 8.
- \( y \) ranges from 0 to 8.
- \( z \) ranges from 0 to 9.
The volume \( dV \) represents an infinitesimally small volume element within this region.
**Integral Explanation:**
The given integral computes the accumulation of the function \( 4x^3 + 3y^2 + 2x \) over the entire volume of the rectangular prism \( B \). This involves integrating with respect to \( z \), \( y \), and \( x \), typically in that order, although the order can vary based on the problem requirements.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)