et A� be an 5 by 5 matrix, let v1�1 be an eigenvector of A� with eigenvalue λ1�1 and let v2�2 be an eigenvector of A� with eigenvalue λ2�2. Select all items below that are true. A. The vector −5v1−5�1 need not be an eigenvector of A�. B. If v1�1 is a scalar multiple of v2�2, then λ1=λ2�1=�2. C. The vector −5v1−5�1 is an eigenvector of A�.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let A� be an 5 by 5 matrix, let v1�1 be an eigenvector of A� with eigenvalue λ1�1 and let v2�2 be an eigenvector of A� with eigenvalue λ2�2. Select all items below that are true.
A. The vector −5v1−5�1 need not be an eigenvector of A�.

B. If v1�1 is a scalar multiple of v2�2, then λ1=λ2�1=�2.

C. The vector −5v1−5�1 is an eigenvector of A�.

D. For any real number c�, cλ1��1 is also an eigenvalue of A�.

E. If 0 is an eigenvalue of A�, then A� is singular.

F. If λ1=λ2�1=�2, then v1+v2�1+�2 is an eigenvector of A� (as long as it is nonzero).

G. If λ1=λ2�1=�2, then v1�1 must be a scalar multiple of v2�2 (or vice versa).

H. It is entirely possible that the zero vector is an eigenvector of A�.

I. If A� is singular, then 0 is an eigenvalue of A�.

J. None of the above

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,