Estimate Ay using differentials. .1/5 y = x5 e3x-1 a = 1, dx = 0.1 (Give your answer to four decimal places.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Estimating Δy Using Differentials

To estimate the change in \( y \) (denoted as \( \Delta y \)) using differentials, consider the function provided:

\[ y = x^{1/5} e^{3x-1} \]

We are given:
\[ a = 1 \]
\[ dx = 0.1 \]

To find \( \Delta y \approx dy \), follow these steps:

1. **Compute the first derivative \( \frac{dy}{dx} \) of the function \( y = x^{1/5} e^{3x-1} \):**

\[ y = f(x) = x^{1/5} e^{3x-1} \]

Using the product rule and chain rule for differentiation:

\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \cdot e^{3x-1} \right) \]

\[ \frac{dy}{dx} = \left( \frac{d}{dx} x^{1/5} \right) e^{3x-1} + x^{1/5} \left( \frac{d}{dx} e^{3x-1} \right) \]

Where \( \frac{d}{dx} x^{1/5} = \frac{1}{5} x^{-4/5} \) and \( \frac{d}{dx} e^{3x-1} = 3 e^{3x-1} \):

\[ \frac{dy}{dx} = \frac{1}{5} x^{-4/5} e^{3x-1} + x^{1/5} \cdot 3 e^{3x-1} \]

\[ \frac{dy}{dx} = e^{3x-1} \left(\frac{1}{5} x^{-4/5} + 3 x^{1/5} \right) \]

2. **Evaluate the derivative at \( a = 1 \):**

\[ \frac{dy}{dx} \bigg|_{x=1} = e^{3 \cdot 1 - 1} \left(\frac{1}{5} \cdot 1^{-4/5} + 3 \cdot 1^{1/5} \right)
Transcribed Image Text:### Estimating Δy Using Differentials To estimate the change in \( y \) (denoted as \( \Delta y \)) using differentials, consider the function provided: \[ y = x^{1/5} e^{3x-1} \] We are given: \[ a = 1 \] \[ dx = 0.1 \] To find \( \Delta y \approx dy \), follow these steps: 1. **Compute the first derivative \( \frac{dy}{dx} \) of the function \( y = x^{1/5} e^{3x-1} \):** \[ y = f(x) = x^{1/5} e^{3x-1} \] Using the product rule and chain rule for differentiation: \[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \cdot e^{3x-1} \right) \] \[ \frac{dy}{dx} = \left( \frac{d}{dx} x^{1/5} \right) e^{3x-1} + x^{1/5} \left( \frac{d}{dx} e^{3x-1} \right) \] Where \( \frac{d}{dx} x^{1/5} = \frac{1}{5} x^{-4/5} \) and \( \frac{d}{dx} e^{3x-1} = 3 e^{3x-1} \): \[ \frac{dy}{dx} = \frac{1}{5} x^{-4/5} e^{3x-1} + x^{1/5} \cdot 3 e^{3x-1} \] \[ \frac{dy}{dx} = e^{3x-1} \left(\frac{1}{5} x^{-4/5} + 3 x^{1/5} \right) \] 2. **Evaluate the derivative at \( a = 1 \):** \[ \frac{dy}{dx} \bigg|_{x=1} = e^{3 \cdot 1 - 1} \left(\frac{1}{5} \cdot 1^{-4/5} + 3 \cdot 1^{1/5} \right)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Numerical Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,