equivalent définitión of the lehnité intégral :R-R between a and b, given x = a+ k() for 0sksn: Lf.a, b) =D f(x)dx = lim 1,(f.a, b) iv) We call a function f: R R monotone increasing if x> y implies f(x) > f(y). Show that, if f is monotone increasing, then, for any a,b e R,a < b, and neN I,f,a,b) < J.f,a, b) v) Without formally proving it, explain why: lim J,f,a,b) = S(x)dx lim I,f,a, b)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

i need sol of these parts Asap

c) Below is an alternative but equivalent definition of the definite integral of f: R R
between a and b, given xg = a + k() for 0sksn:
n-1
k=0
|f(x)dx = lim I,(f ,a, b)
iv) We call a function f: R-R monotone increasing if x> y implies f(x) > f(y).
Show that, if f is monotone increasing, then, for any a,be R, a < b, and neN
I„f,a, b) < J„(f,a, b)
v) Without formally proving it, explain why:
JS.a,b) = F
lim
f(x)dx = lim I,f,a, b)
Transcribed Image Text:c) Below is an alternative but equivalent definition of the definite integral of f: R R between a and b, given xg = a + k() for 0sksn: n-1 k=0 |f(x)dx = lim I,(f ,a, b) iv) We call a function f: R-R monotone increasing if x> y implies f(x) > f(y). Show that, if f is monotone increasing, then, for any a,be R, a < b, and neN I„f,a, b) < J„(f,a, b) v) Without formally proving it, explain why: JS.a,b) = F lim f(x)dx = lim I,f,a, b)
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,