Engineering Dynamics need help from 4,5,6,7 thank you A ball of mass m is moving along a vertical semi-cylinder of radius R as it is guided by the arm OA. The arm moves in a clockwise direction with a constant angular velocity ω. Assume 0° ≤ Φ ≤ 90°. Neglect any friction. Neglect also the size of the ball and the thickness of the arm. Find the relationship between r, R and θ where r is the distance between O and the ball. Draw a free body diagram of the ball assuming that it is in contact with the cylinder and the arm OA. Write the equations of motion in the (r, θ) coordinate system. Find the normal force acting on the ball by the cylinder for Φ = Φ0. Find the normal force acting on the ball by the bar for Φ = Φ0. Determine the angle Φ at which the ball loses contact with the cylinder. Take m = 1 kg, R = 1.4 m, ω = 0.5 rad/s, and Φ = 60°
Engineering Dynamics need help from 4,5,6,7 thank you A ball of mass m is moving along a vertical semi-cylinder of radius R as it is guided by the arm OA. The arm moves in a clockwise direction with a constant angular velocity ω. Assume 0° ≤ Φ ≤ 90°. Neglect any friction. Neglect also the size of the ball and the thickness of the arm. Find the relationship between r, R and θ where r is the distance between O and the ball. Draw a free body diagram of the ball assuming that it is in contact with the cylinder and the arm OA. Write the equations of motion in the (r, θ) coordinate system. Find the normal force acting on the ball by the cylinder for Φ = Φ0. Find the normal force acting on the ball by the bar for Φ = Φ0. Determine the angle Φ at which the ball loses contact with the cylinder. Take m = 1 kg, R = 1.4 m, ω = 0.5 rad/s, and Φ = 60°
Engineering Dynamics need help from 4,5,6,7 thank you A ball of mass m is moving along a vertical semi-cylinder of radius R as it is guided by the arm OA. The arm moves in a clockwise direction with a constant angular velocity ω. Assume 0° ≤ Φ ≤ 90°. Neglect any friction. Neglect also the size of the ball and the thickness of the arm. Find the relationship between r, R and θ where r is the distance between O and the ball. Draw a free body diagram of the ball assuming that it is in contact with the cylinder and the arm OA. Write the equations of motion in the (r, θ) coordinate system. Find the normal force acting on the ball by the cylinder for Φ = Φ0. Find the normal force acting on the ball by the bar for Φ = Φ0. Determine the angle Φ at which the ball loses contact with the cylinder. Take m = 1 kg, R = 1.4 m, ω = 0.5 rad/s, and Φ = 60°
Engineering Dynamics need help from 4,5,6,7 thank you
A ball of mass m is moving along a vertical semi-cylinder of radius R as it is guided by the arm OA. The arm moves in a clockwise direction with a constant angular velocity ω. Assume 0° ≤ Φ ≤ 90°.
Neglect any friction. Neglect also the size of the ball and the thickness of the arm.
Find the relationship between r, R and θ where r is the distance between O and the ball.
Draw a free body diagram of the ball assuming that it is in contact with the cylinder and the arm OA.
Write the equations of motion in the (r, θ) coordinate system.
Find the normal force acting on the ball by the cylinder for Φ = Φ0.
Find the normal force acting on the ball by the bar for Φ = Φ0.
Determine the angle Φ at which the ball loses contact with the cylinder.
Take m = 1 kg, R = 1.4 m, ω = 0.5 rad/s, and Φ = 60°
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.