ENGINEERING APPLICATION An optical fiber allows rays 44 of light to propagate long distances by using total internal reflec- tion. Optical fibers are used extensively in medicine and in digital communications. As shown in Figure 31-58 the fiber consists of a core material that has an index of refraction n, and radius b sur- rounded by a cladding material that has an index of refraction nz < n,. The numerical aperture of the fiber is defined as sin 0,, where 0, is the angle of incidence of a ray of light that impinges on the center of the end of the fiber and then reflects off the core- cladding interface just at the critical angle. Using the figure as a guide, show that the numerical aperture is given by sine, = Vn3 – n? assuming the ray is initially in air. Hint: Use of the Pythagorean theorem may be required. Incident ray 13. n2 10, 0 FIGURE 31 -58 Problems 44, 45, and 46
ENGINEERING APPLICATION An optical fiber allows rays 44 of light to propagate long distances by using total internal reflec- tion. Optical fibers are used extensively in medicine and in digital communications. As shown in Figure 31-58 the fiber consists of a core material that has an index of refraction n, and radius b sur- rounded by a cladding material that has an index of refraction nz < n,. The numerical aperture of the fiber is defined as sin 0,, where 0, is the angle of incidence of a ray of light that impinges on the center of the end of the fiber and then reflects off the core- cladding interface just at the critical angle. Using the figure as a guide, show that the numerical aperture is given by sine, = Vn3 – n? assuming the ray is initially in air. Hint: Use of the Pythagorean theorem may be required. Incident ray 13. n2 10, 0 FIGURE 31 -58 Problems 44, 45, and 46
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![•• ENGINEERING APPLICATION An optical fiber allows rays
of light to propagate long distances by using total internal reflec-
tion. Optical fibers are used extensively in medicine and in digital
communications. As shown in Figure 31-58 the fiber consists of a
core material that has an index of refraction n, and radius b sur-
rounded by a cladding material that has an index of refraction
n< n,. The numerical aperture of the fiber is defined as sin e,,
where 0, is the angle of incidence of a ray of light that impinges
on the center of the end of the fiber and then reflects off the core-
cladding interface just at the critical angle. Using the figure as
a guide, show that the numerical aperture is given by
sin0, = Vn3 – n? assuming the ray is initially in air. Hint: Use of the
Pythagorean theorem may be required.
44
Incident ray
n3-
n2
a
10, 0
2 b
FIGURE 31- 58 Problems 44, 45, and 46
•• ENGINEERING APPLICATION Find the maximum angle of
incidence 0, of a ray that would propagate through an optical fiber
that has a core index of refraction of 1.492, a core radius of
50.00 um, and a cladding index of 1.489. See Problem 44. SSM
45](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3b49e1f8-38f9-4b50-8332-474eb6873f81%2Faef735a9-d1f5-4ef3-b34d-4d9b98bd1ccb%2Fi7ltb_processed.jpeg&w=3840&q=75)
Transcribed Image Text:•• ENGINEERING APPLICATION An optical fiber allows rays
of light to propagate long distances by using total internal reflec-
tion. Optical fibers are used extensively in medicine and in digital
communications. As shown in Figure 31-58 the fiber consists of a
core material that has an index of refraction n, and radius b sur-
rounded by a cladding material that has an index of refraction
n< n,. The numerical aperture of the fiber is defined as sin e,,
where 0, is the angle of incidence of a ray of light that impinges
on the center of the end of the fiber and then reflects off the core-
cladding interface just at the critical angle. Using the figure as
a guide, show that the numerical aperture is given by
sin0, = Vn3 – n? assuming the ray is initially in air. Hint: Use of the
Pythagorean theorem may be required.
44
Incident ray
n3-
n2
a
10, 0
2 b
FIGURE 31- 58 Problems 44, 45, and 46
•• ENGINEERING APPLICATION Find the maximum angle of
incidence 0, of a ray that would propagate through an optical fiber
that has a core index of refraction of 1.492, a core radius of
50.00 um, and a cladding index of 1.489. See Problem 44. SSM
45
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY