Energy Conversion Problem 1. a) Influence of concentration on the free energy change. In frog muscle, the concentrations of ATP, ADP, and phosphate are 1.25x10³ M, 0.50x10-³ M, and 2.50 x10³ M respectively. Write the reaction and the reaction quotient, Q, for the reaction ATP ADP + P₁. Calculate the free energy change, AG', for the hydrolysis of ATP in muscle cells given the concentrations given above. Assume that AG"=-31.0 kJ mol-¹ for the hydrolysis of ATP, the temperature is 25°C, and the pH=7. b) For this system, what is the maximum amount of work that can be done per mole of ATP hydrolyzed? c) In muscle, phosphocreatine serves as a carrier of chemical energy. It can transfer its phosphate group to ADP to replenish the ATP used in muscle contraction. This is an example of energy coupling- using the energy of a very favorable reaction to drive an unfavorable reaction. The enzyme creatine phosphokinase catalyzes the reaction: Net rxn phosphocreatine + ADP creatine phosphokinase → creatine + ATP AG"= ???? kJ mol-¹
Energy Conversion Problem 1. a) Influence of concentration on the free energy change. In frog muscle, the concentrations of ATP, ADP, and phosphate are 1.25x10³ M, 0.50x10-³ M, and 2.50 x10³ M respectively. Write the reaction and the reaction quotient, Q, for the reaction ATP ADP + P₁. Calculate the free energy change, AG', for the hydrolysis of ATP in muscle cells given the concentrations given above. Assume that AG"=-31.0 kJ mol-¹ for the hydrolysis of ATP, the temperature is 25°C, and the pH=7. b) For this system, what is the maximum amount of work that can be done per mole of ATP hydrolyzed? c) In muscle, phosphocreatine serves as a carrier of chemical energy. It can transfer its phosphate group to ADP to replenish the ATP used in muscle contraction. This is an example of energy coupling- using the energy of a very favorable reaction to drive an unfavorable reaction. The enzyme creatine phosphokinase catalyzes the reaction: Net rxn phosphocreatine + ADP creatine phosphokinase → creatine + ATP AG"= ???? kJ mol-¹
Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
Related questions
Question
Please show work/answer for 1 (a-c)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning
Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON