en function G(x, y) = 3x² + + xy subject to the ofd I -24 constraint 2=2x+4y

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

TRANSCRIBE THE FOLLOWING TEXT IN DIGITAL FORMAT

 

Given function
subject to the
G (x, y) = 3 x ² + + xy - 2y ² - 2x + 4y - 1
constraint
дех,у) = 8х+5у -24=0,
Hence, the Lagrange function is
I (x, y, x) = G(x,y) + x g(x, y)
so,
we
olo o
2x
ду
are
ƏL
Эх
= 3x²³+ / xy . zy² + 2x pay-1
ху-чуч
+ x (8x + 5y-24)
= 6x + 1/7 y − 2 +81
-
J.L
ay
g(x,y)
(1
=
=0
to
4
120
x - 4y + 4 + 57.
solve these equations
=0
-(¹1)
or, 6x + 4y - 2+8X 20
4*- 4y +4 +5 × =0 (2)
- (3).
8x4
57 - 24 = 0
Transcribed Image Text:Given function subject to the G (x, y) = 3 x ² + + xy - 2y ² - 2x + 4y - 1 constraint дех,у) = 8х+5у -24=0, Hence, the Lagrange function is I (x, y, x) = G(x,y) + x g(x, y) so, we olo o 2x ду are ƏL Эх = 3x²³+ / xy . zy² + 2x pay-1 ху-чуч + x (8x + 5y-24) = 6x + 1/7 y − 2 +81 - J.L ay g(x,y) (1 = =0 to 4 120 x - 4y + 4 + 57. solve these equations =0 -(¹1) or, 6x + 4y - 2+8X 20 4*- 4y +4 +5 × =0 (2) - (3). 8x4 57 - 24 = 0
froom (1) f (2), we get
6 x + 1²/22 y =
8
24x +y - 8
8
77 120x + 5
Now,
5y - 40
112x + 1
-2
+133y
solving
14
x =
If we
then
of G.
4x - 4y +4
5
40 =
27 is
Therefore,
Nalue of G at
and
there
is
2-164
5
8x - 128y +
=168
(3) 4 (4),
y =
Now, G₁ (¹ - 8/3) =
27.
we want to know if 27 is the
maximum
oro
minimum value.
8
no
+16
-
3
PJ
we get
take the point
G(3,0) = 27 +0 -0-6-1
<27.
+128
(x,y) = (3,0)
the
maximum
the point (^4 - 8/3)
minimum valce
Transcribed Image Text:froom (1) f (2), we get 6 x + 1²/22 y = 8 24x +y - 8 8 77 120x + 5 Now, 5y - 40 112x + 1 -2 +133y solving 14 x = If we then of G. 4x - 4y +4 5 40 = 27 is Therefore, Nalue of G at and there is 2-164 5 8x - 128y + =168 (3) 4 (4), y = Now, G₁ (¹ - 8/3) = 27. we want to know if 27 is the maximum oro minimum value. 8 no +16 - 3 PJ we get take the point G(3,0) = 27 +0 -0-6-1 <27. +128 (x,y) = (3,0) the maximum the point (^4 - 8/3) minimum valce
Expert Solution
steps

Step by step

Solved in 4 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,