Ely)-[i -2x -e-3x -3 15e-Qx -Le-3x 9 ㅇ @ CyJ= 15e-ax-e-3x dx 9 -3 € cy)= [15e -e-3x -3 15e-2x + -1 dx ECy)= -5 -2x -ax C-e-3x) %3D FIVE STAR. ***** FIVE STAR. *****
Ely)-[i -2x -e-3x -3 15e-Qx -Le-3x 9 ㅇ @ CyJ= 15e-ax-e-3x dx 9 -3 € cy)= [15e -e-3x -3 15e-2x + -1 dx ECy)= -5 -2x -ax C-e-3x) %3D FIVE STAR. ***** FIVE STAR. *****
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
I need some help completing this intergal please
![The following is a transcription of a mathematical derivation involving integrals. It appears to calculate the expected value, \( E(y) \), for a given function using integration techniques.
1. **Expression 1:**
\[
E(y) = \int_{0}^{\infty} 15 e^{-2x} \left( \frac{0 - e^{-3x}}{-3} \right) + \left[ \frac{-1}{9} e^{-3x} \right] \, dx
\]
2. **Expression 2:**
\[
= \int_{0}^{\infty} 15 e^{-2x} \left( \frac{-e^{-3x}}{-3} \right) + \left( 0 - \frac{1}{9} \right) \, dx
\]
3. **Expression 3:**
\[
= \int_{0}^{\infty} 15 e^{-2x} \left( \frac{-e^{-3x}}{-3} \right) + \frac{-1}{9} \, dx
\]
4. **Expression 4:**
\[
E(y) = -5 \int_{0}^{\infty} e^{-2x} (e^{-3x}) - \frac{1}{9} \, dx
\]
This series of expressions shows the step-by-step transformation and simplification of an integral used to find the expected value, \( E(y) \). The process involves substitution and algebraic manipulation.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F308db737-7862-446c-973d-78bf4e1d9584%2F7033815b-fb4c-48ce-a59d-275abcd742c5%2Ft0frfd.jpeg&w=3840&q=75)
Transcribed Image Text:The following is a transcription of a mathematical derivation involving integrals. It appears to calculate the expected value, \( E(y) \), for a given function using integration techniques.
1. **Expression 1:**
\[
E(y) = \int_{0}^{\infty} 15 e^{-2x} \left( \frac{0 - e^{-3x}}{-3} \right) + \left[ \frac{-1}{9} e^{-3x} \right] \, dx
\]
2. **Expression 2:**
\[
= \int_{0}^{\infty} 15 e^{-2x} \left( \frac{-e^{-3x}}{-3} \right) + \left( 0 - \frac{1}{9} \right) \, dx
\]
3. **Expression 3:**
\[
= \int_{0}^{\infty} 15 e^{-2x} \left( \frac{-e^{-3x}}{-3} \right) + \frac{-1}{9} \, dx
\]
4. **Expression 4:**
\[
E(y) = -5 \int_{0}^{\infty} e^{-2x} (e^{-3x}) - \frac{1}{9} \, dx
\]
This series of expressions shows the step-by-step transformation and simplification of an integral used to find the expected value, \( E(y) \). The process involves substitution and algebraic manipulation.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

