Eliminate the parameter and describe the shape of the curve: :=√√x+4; _y=3√t; for 0≤t≤16
Eliminate the parameter and describe the shape of the curve: :=√√x+4; _y=3√t; for 0≤t≤16
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Eliminate the parameter and describe the shape of the curve:**
Given the parametric equations:
\[ x = \sqrt{t} + 4, \quad y = 3\sqrt{t} \]
for \[ 0 \leq t \leq 16 \].
To eliminate the parameter \( t \), we solve for \( t \) in terms of \( x \) or \( y \).
1. From the equation \( x = \sqrt{t} + 4 \):
\[
\sqrt{t} = x - 4
\]
\[
t = (x - 4)^2
\]
2. Substitute \( t \) in the equation for \( y \):
\[
y = 3 \sqrt{t} = 3(x - 4)
\]
Therefore, the Cartesian equation of the curve is:
\[
y = 3(x - 4)
\]
The shape of this curve is a straight line with a slope of 3, offset horizontally by 4 units. The line is defined for the range \( 0 \leq t \leq 16 \), which translates to \( 0 \leq x-4 \leq 4 \), or \( 4 \leq x \leq 8 \).
The corresponding range for \( y \) is \( 0 \leq y \leq 12 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F135565b3-f69f-45e7-bb45-4192b3629324%2Fe2d48ac0-2a6d-470d-b9db-c34dd5b8b147%2Fjne3ptr_processed.png&w=3840&q=75)
Transcribed Image Text:**Eliminate the parameter and describe the shape of the curve:**
Given the parametric equations:
\[ x = \sqrt{t} + 4, \quad y = 3\sqrt{t} \]
for \[ 0 \leq t \leq 16 \].
To eliminate the parameter \( t \), we solve for \( t \) in terms of \( x \) or \( y \).
1. From the equation \( x = \sqrt{t} + 4 \):
\[
\sqrt{t} = x - 4
\]
\[
t = (x - 4)^2
\]
2. Substitute \( t \) in the equation for \( y \):
\[
y = 3 \sqrt{t} = 3(x - 4)
\]
Therefore, the Cartesian equation of the curve is:
\[
y = 3(x - 4)
\]
The shape of this curve is a straight line with a slope of 3, offset horizontally by 4 units. The line is defined for the range \( 0 \leq t \leq 16 \), which translates to \( 0 \leq x-4 \leq 4 \), or \( 4 \leq x \leq 8 \).
The corresponding range for \( y \) is \( 0 \leq y \leq 12 \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)