You are asked to design a BJT inverter, as shown in Figure 2.b. The input voltage is equal to either zero (logic level 0) or 5 V (logic level 1), and Vcc = 5 V. The transistor has VBe = 0.6 V when it is on and Vce (sat) = 0.2 V. i) Calculate the value of Rc to have Iç = 3 mA when the transistor is on. ii) Calculate the maximum value of Rp to make sure the transistor is in saturation when it is on, assuming Bmin = 80 in the active mode. +Vc Re Rg Figure 2.b.
You are asked to design a BJT inverter, as shown in Figure 2.b. The input voltage is equal to either zero (logic level 0) or 5 V (logic level 1), and Vcc = 5 V. The transistor has VBe = 0.6 V when it is on and Vce (sat) = 0.2 V. i) Calculate the value of Rc to have Iç = 3 mA when the transistor is on. ii) Calculate the maximum value of Rp to make sure the transistor is in saturation when it is on, assuming Bmin = 80 in the active mode. +Vc Re Rg Figure 2.b.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question

Transcribed Image Text:You are asked to design a BJT inverter, as shown in Figure 2.b. The input voltage
is equal to either zero (logic level 0) or 5 V (logic level 1), and Vcc = 5 V. The
transistor has VBe = 0.6 V when it is on and Vce (sat) = 0.2 V.
i)
Calculate the value of Rc to have Iç = 3 mA when the transistor is on.
ii)
Calculate the maximum value of Rp to make sure the transistor is in
saturation when it is on, assuming Bmin = 80 in the active mode.
+Vc
Re
Rg
Figure 2.b.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,