E=2*10^5 I=30000 L=600 W=25 y = dy dx W 120EIL = 120 FIL (-5X² + 6(³X²-1²) ū assume as р 38, P = = 5x² +61²³²x² - L^=0 5 3 (-x ² + 21³x²³ - 1+x) Using MATLAB, Solve x from P(x)= 0 using Bisection method between a=100 and b=300 (3% allowable error) Put the obtained value of x to get value of y
E=2*10^5 I=30000 L=600 W=25 y = dy dx W 120EIL = 120 FIL (-5X² + 6(³X²-1²) ū assume as р 38, P = = 5x² +61²³²x² - L^=0 5 3 (-x ² + 21³x²³ - 1+x) Using MATLAB, Solve x from P(x)= 0 using Bisection method between a=100 and b=300 (3% allowable error) Put the obtained value of x to get value of y
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![SP.
E=2*10^5
I=30000
L=600
W=25
y =
dy
dx
=
W
120EIL
3
- x² +21²³x²³ - 1+x)
W
2-₁²)
120EIL ( = 5x² + 6(³X²-(+)
IV
assume as р
P = = 5x² + 62²x² - L^=0
Using MATLAB,
Solve x from P(x)= 0 using Bisection method
between a=100 and b=300 (3% allowable error)
Put the obtained value of x to get value of y](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdf757dcf-74ee-412e-8a8d-578ccd237cce%2F8177ee4b-cad0-4cf3-a7c0-a974266e0912%2Fgs4db5k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:SP.
E=2*10^5
I=30000
L=600
W=25
y =
dy
dx
=
W
120EIL
3
- x² +21²³x²³ - 1+x)
W
2-₁²)
120EIL ( = 5x² + 6(³X²-(+)
IV
assume as р
P = = 5x² + 62²x² - L^=0
Using MATLAB,
Solve x from P(x)= 0 using Bisection method
between a=100 and b=300 (3% allowable error)
Put the obtained value of x to get value of y
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)