(E – ko) Vn – ko Un (13) (E – ki) U, – kị E V, (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – k)) (E – ko) Vn – (E – k1) ko Un (E – k) µ, (15) ko (E – k1) Un – ko ki E V, ko H. (16) Thus, the combination of (15) and (16) is (E – (ko + ki + ko ki) E + ko k1) Vn = (1 – kı + ko) H, (E² – 6 E + ko ki) Vn (17) (1 – k1 + ko) H, where o = ko + ki + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, 4² – 4 ko k1 $- V6? – 4 ko ki 1- k1 + ko + 1- ko – k1 Vn = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give n 0 + V02 – 4 ko ki ko $ + V02 - 4 ko ki Un = A 2 2 1 + B ko 62 – 4 ko k1 - 1 42 – 4 ko ki ф — (19) 2
(E – ko) Vn – ko Un (13) (E – ki) U, – kị E V, (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – k)) (E – ko) Vn – (E – k1) ko Un (E – k) µ, (15) ko (E – k1) Un – ko ki E V, ko H. (16) Thus, the combination of (15) and (16) is (E – (ko + ki + ko ki) E + ko k1) Vn = (1 – kı + ko) H, (E² – 6 E + ko ki) Vn (17) (1 – k1 + ko) H, where o = ko + ki + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, 4² – 4 ko k1 $- V6? – 4 ko ki 1- k1 + ko + 1- ko – k1 Vn = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give n 0 + V02 – 4 ko ki ko $ + V02 - 4 ko ki Un = A 2 2 1 + B ko 62 – 4 ko k1 - 1 42 – 4 ko ki ф — (19) 2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Show me the determine red and all information is here
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,