(E – ko) Vn – ko Un (13) (E – ki) U, – kị E V, (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – k)) (E – ko) Vn – (E – k1) ko Un (E – k) µ, (15) ko (E – k1) Un – ko ki E V, ko H. (16) Thus, the combination of (15) and (16) is (E – (ko + ki + ko ki) E + ko k1) Vn = (1 – kı + ko) H, (E² – 6 E + ko ki) Vn (17) (1 – k1 + ko) H, where o = ko + ki + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, 4² – 4 ko k1 $- V6? – 4 ko ki 1- k1 + ko + 1- ko – k1 Vn = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give n 0 + V02 – 4 ko ki ko $ + V02 - 4 ko ki Un = A 2 2 1 + B ko 62 – 4 ko k1 - 1 42 – 4 ko ki ф — (19) 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Show me the determine red and all information is here

Let w2n-1 = Un, W2n-2 = Vn, 22n–1 = Xn and z2n-2 = Yn, implies that
Vn+1 – ko Un – kio Vn = µ,
(11)
Un+1 – kį Vn+1 – kị Un = µ,
and
Yn+1 – Vo Xn – v Yn = €,
(12)
Xn+1 – Vị Yn+1 – V1 Xn = €.
It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference
equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is
(E – ko) Vn – ko Un
(13)
(E – ki) Un – ki E V,
(14)
where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko,
respectively,
(E – k1) (E – ko) Vn – (E – k1) ko Un
(E – ki) µ,
(15)
ko (E – k1) Un – ko ki E V,
ko fH.
(16)
Thus, the combination of (15) and (16) is
(E²
(ko + ki + ko ki) E + ko k1) Vn
(1 – k1 + ko) µ,
(17)
(E? – o E + ko ki) Vn = (1 – k1 + ko) µ,
where ø = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is
easy to obtain the solution,
n
ø + Vo? – 4 ko kı
6² – 4 ko k'1
(1– kị + ko
1 – ko – k1.
Ф —
-
Vn
= A
+ B
(18)
2
since A and B are constants. By Substituting (18) in (13), we give
1
Un = A
ko
- 4 ko k1
ф +
1
4 ko ki
2
2
6² – 4 ko k1
0² – 4 ko ki
Ф —
+ B
1
(19)
2
(G-)(
1– k1 + ko
+
1 — kо — ki,
H.
ko
6.
Transcribed Image Text:Let w2n-1 = Un, W2n-2 = Vn, 22n–1 = Xn and z2n-2 = Yn, implies that Vn+1 – ko Un – kio Vn = µ, (11) Un+1 – kį Vn+1 – kị Un = µ, and Yn+1 – Vo Xn – v Yn = €, (12) Xn+1 – Vị Yn+1 – V1 Xn = €. It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is (E – ko) Vn – ko Un (13) (E – ki) Un – ki E V, (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – k1) (E – ko) Vn – (E – k1) ko Un (E – ki) µ, (15) ko (E – k1) Un – ko ki E V, ko fH. (16) Thus, the combination of (15) and (16) is (E² (ko + ki + ko ki) E + ko k1) Vn (1 – k1 + ko) µ, (17) (E? – o E + ko ki) Vn = (1 – k1 + ko) µ, where ø = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, n ø + Vo? – 4 ko kı 6² – 4 ko k'1 (1– kị + ko 1 – ko – k1. Ф — - Vn = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give 1 Un = A ko - 4 ko k1 ф + 1 4 ko ki 2 2 6² – 4 ko k1 0² – 4 ko ki Ф — + B 1 (19) 2 (G-)( 1– k1 + ko + 1 — kо — ki, H. ko 6.
In this paper, we solve and study the properties of the following system
E Wn-p
> Zn-h
Zn-h
Wn-P
p=0
h=1
p=1
h=0
Wn+1
+µ and zn+1
+ €,
(4)
Zn - €
Wn - H
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, zn}-
be a solution of (4), then
n=-2
o+ V02 – 4 ko k1
$ - V62 – 4 ko k1
k1 + ko
w2n-2
+ B
+
2
2
ko – k1
n
$ + Vø2 – 4 ko k1
$+ Vø2 – 4 ko k1
0 - V02 – 4 ko k1
0 - Vo2 – 4 ko k1
1
A
ko
1
+ B
ko
w2n-1
- 1
- 1
2
2
+ (-) (는)-)
(1– ko + k1
1– k1 – ko
1
- 1
ko
+ V2 – 4 vo vi
1 – vị + vo
+
- V62
4 vo v1
22n-2
+ D
E,
2
2
- vo - v1
1
+ V2 – 4 vọ v1
b + V2 – 4 vo v1
e;2 – 4 vo v1
al2 - 4 vo vị
22n-1
C
+ D
- 1
2
2
2
+(G-) )-) .
1- vi + vo
1- vo - v1
E,
where A, B, C and D are constants defined as
wo - u
z-1 + z-2
ko
ki =
O = ko + k1 + ko k1,
w-1+ w-2
20 - E
20 - €
w-1 + w-2
v1 =
= vo + vi + vo v1,
2-1+ z-2
1 – Om
Vo2 – 4 ko k1
2 62 – 8 ko ki
1– k1 + ko
1 –
1 – kị + ko`
1 — ко — k1
A =
- 4 ko k1 – o) + 2 ( wo –
w-2 -
V62 – 4 ko ki
2 ф2 — 8 kо k1
1 – ko + k1
- ko – k1
(1 – kị + ko) µ)|,
1 – k1 – ko
B
u - w-2
62 – 4 ko k1 + ¢) +2 ( wo –
=
4 vo v1
2 2 – 8 vo v1
1- vi + vo
1- vị + vo
2-2 -
1- vo - vi
1- vo - vi
V2 – 4 vo vi
1 – vị + vo
1- v1 + vo
E - z-2
2 – 4 vo v1
+
+2
20 -
2 2 – 8 vo vi
- vO - v1
1- vo - v1
since ko + ki 1 and vo +v1 71 for n € N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
Zn-h
Wn-p
Wn+1 - H
h=1
Zn+1 - €
and
(5)
1
1
Zn - €
Wn - u
E Wn-p
> Zn-h
p=0
h=0
4
||
||
Transcribed Image Text:In this paper, we solve and study the properties of the following system E Wn-p > Zn-h Zn-h Wn-P p=0 h=1 p=1 h=0 Wn+1 +µ and zn+1 + €, (4) Zn - € Wn - H where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, zn}- be a solution of (4), then n=-2 o+ V02 – 4 ko k1 $ - V62 – 4 ko k1 k1 + ko w2n-2 + B + 2 2 ko – k1 n $ + Vø2 – 4 ko k1 $+ Vø2 – 4 ko k1 0 - V02 – 4 ko k1 0 - Vo2 – 4 ko k1 1 A ko 1 + B ko w2n-1 - 1 - 1 2 2 + (-) (는)-) (1– ko + k1 1– k1 – ko 1 - 1 ko + V2 – 4 vo vi 1 – vị + vo + - V62 4 vo v1 22n-2 + D E, 2 2 - vo - v1 1 + V2 – 4 vọ v1 b + V2 – 4 vo v1 e;2 – 4 vo v1 al2 - 4 vo vị 22n-1 C + D - 1 2 2 2 +(G-) )-) . 1- vi + vo 1- vo - v1 E, where A, B, C and D are constants defined as wo - u z-1 + z-2 ko ki = O = ko + k1 + ko k1, w-1+ w-2 20 - E 20 - € w-1 + w-2 v1 = = vo + vi + vo v1, 2-1+ z-2 1 – Om Vo2 – 4 ko k1 2 62 – 8 ko ki 1– k1 + ko 1 – 1 – kị + ko` 1 — ко — k1 A = - 4 ko k1 – o) + 2 ( wo – w-2 - V62 – 4 ko ki 2 ф2 — 8 kо k1 1 – ko + k1 - ko – k1 (1 – kị + ko) µ)|, 1 – k1 – ko B u - w-2 62 – 4 ko k1 + ¢) +2 ( wo – = 4 vo v1 2 2 – 8 vo v1 1- vi + vo 1- vị + vo 2-2 - 1- vo - vi 1- vo - vi V2 – 4 vo vi 1 – vị + vo 1- v1 + vo E - z-2 2 – 4 vo v1 + +2 20 - 2 2 – 8 vo vi - vO - v1 1- vo - v1 since ko + ki 1 and vo +v1 71 for n € N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form Zn-h Wn-p Wn+1 - H h=1 Zn+1 - € and (5) 1 1 Zn - € Wn - u E Wn-p > Zn-h p=0 h=0 4 || ||
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,