(E² – (ko + ki + ko ki) E + ko ki) Vn = (1 – kı + ko) µ, (E² – o E + ko ki) Vn = (1 – k1 + ko) H, (17) where o = ko + kı + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, n n (1-k + ko 1 – ko – k , 0 + Vo2 – 4 ko k1 0 - Vo? – 4 ko k1 Vn = A + B (18) 2 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me the steps of determine red and all information is here

In this paper, we solve and study the properties of the following system
Wn-p 2 Zn-h
p=0
Wn-p
h=0
E zn-h
h=1
p=1
Wn+1
+u and zn+1 =
+e,
(4)
Zn - €
Wn - 4
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, z„}-2 be a solution of (4), then
6+ V – 4 ko k1
A
- V2 – 4 ko ki
1- ki + ko
+
w2n-2
+B
Ty – Oy -
- V2 - 4 ko ki
-4 ko ki
+ V2 – 4 ko ki
V2 - 4 ko ki
A
ko
+ B
ko
w2n-1
- 1
2
2
•((금-1) (는)
1– ko + k1
+ V2 - 4 vo V1
- V2 - 4 VI
1- v + vo
22n-2
+D
%3D
1
+ Vu2 – 4 o VI
gb + V2 – 4 vo vỊ
1
1.
+D
- V2 – 4 v vỊ
V2 – 4 vo vi
22n-1
- v + vo
1- 0 - VI
where A, B, C and D are constants defined as
wo -H
2-1 +z-2
ko
ki =
0 = ko + ki + ko ki,
w-1 + w-2
20 - e
20 - e
w-1 +w-2
, = vo + vi + vo V1,
2-1 +2-2
1-Om
Vo2 – 4 ko k1
-)") (v - 4ko ki – 4) + 2 (wo - (G ) -).
2 62 - 8 ko ki
V2- 4 ko ki
262 - 8 ko ki
1- ko + ki
- ko – k1
(1 – kj + ko
1- k1 - ko
B =
u- w-2
+2
wn-
- vi +u
C =
-2
+ 2
22 - 8 0 vI
- o - VI
) [(는
1- v1 + o
- v0 - v1
1- v + o
2) (V2 – 4vo vI +
+2
2 2
-- 0 - v1
since ko + ki #1 and vo + vı #1 for n e N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
2 zn-h
Wn-p
p=1
Wn+1
h=1
Zn+1
and
(5)
1
E Wn-p
1
> Zn-h
h=0
wn -u
p-0
4
Then, we assume that
Wn+1 - l
Wn - H
kn+1 =
1
kn =
2
Wn-p
p=0
Wn-p
p=1
(6)
Zn+1 -€
Zn - €
Vn+1 =
Vn
2
E Zn-h
> Zn-h
h=1
h=0
Substituting (6) in (5), we have
Zn-h
h=1
1
== kn-1,
Vn
kn+1 =
(7)
E Wn-p
p=1
Vn+1 =
= Vn-1.
kn
%3D
Wn -
Hence, we see that
1
ki = -,
Vo
wo - H
20 - €
ko
w-1+ w_2
Vo =
Z-1+ z-2
ko
and
at n = 1, k2 = ko and
V2 = Vo,
at n = 2, k3 = k1 and
V3 = V1,
at n = 3, k4 = ko and
V4 = Vo,
at n = 4, ks = k and
V5 = V1,
(8)
at n = 2 n, k2n = ko and
V2n = Vo,
at n = 2n + 1, k2n+1 = k, and
V2n+1 = V1.
Now, from the relations in (6) we get
Wn = µ+ kn (wn-1 + wn-2) and zn = e + vn (žn-1 + zn-2).
(9)
Using (8) in (9), we have
W2n = H+ ko (w2n-1 + w2n-2),
W2n+1 = µ+ k1 (w2n + w2n-1),
(10)
Z2n = €+ vo (z2n-1 + 2n-2),
22n+1 = €+ V1 (22n + 22n-1).
Transcribed Image Text:In this paper, we solve and study the properties of the following system Wn-p 2 Zn-h p=0 Wn-p h=0 E zn-h h=1 p=1 Wn+1 +u and zn+1 = +e, (4) Zn - € Wn - 4 where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, z„}-2 be a solution of (4), then 6+ V – 4 ko k1 A - V2 – 4 ko ki 1- ki + ko + w2n-2 +B Ty – Oy - - V2 - 4 ko ki -4 ko ki + V2 – 4 ko ki V2 - 4 ko ki A ko + B ko w2n-1 - 1 2 2 •((금-1) (는) 1– ko + k1 + V2 - 4 vo V1 - V2 - 4 VI 1- v + vo 22n-2 +D %3D 1 + Vu2 – 4 o VI gb + V2 – 4 vo vỊ 1 1. +D - V2 – 4 v vỊ V2 – 4 vo vi 22n-1 - v + vo 1- 0 - VI where A, B, C and D are constants defined as wo -H 2-1 +z-2 ko ki = 0 = ko + ki + ko ki, w-1 + w-2 20 - e 20 - e w-1 +w-2 , = vo + vi + vo V1, 2-1 +2-2 1-Om Vo2 – 4 ko k1 -)") (v - 4ko ki – 4) + 2 (wo - (G ) -). 2 62 - 8 ko ki V2- 4 ko ki 262 - 8 ko ki 1- ko + ki - ko – k1 (1 – kj + ko 1- k1 - ko B = u- w-2 +2 wn- - vi +u C = -2 + 2 22 - 8 0 vI - o - VI ) [(는 1- v1 + o - v0 - v1 1- v + o 2) (V2 – 4vo vI + +2 2 2 -- 0 - v1 since ko + ki #1 and vo + vı #1 for n e N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form 2 zn-h Wn-p p=1 Wn+1 h=1 Zn+1 and (5) 1 E Wn-p 1 > Zn-h h=0 wn -u p-0 4 Then, we assume that Wn+1 - l Wn - H kn+1 = 1 kn = 2 Wn-p p=0 Wn-p p=1 (6) Zn+1 -€ Zn - € Vn+1 = Vn 2 E Zn-h > Zn-h h=1 h=0 Substituting (6) in (5), we have Zn-h h=1 1 == kn-1, Vn kn+1 = (7) E Wn-p p=1 Vn+1 = = Vn-1. kn %3D Wn - Hence, we see that 1 ki = -, Vo wo - H 20 - € ko w-1+ w_2 Vo = Z-1+ z-2 ko and at n = 1, k2 = ko and V2 = Vo, at n = 2, k3 = k1 and V3 = V1, at n = 3, k4 = ko and V4 = Vo, at n = 4, ks = k and V5 = V1, (8) at n = 2 n, k2n = ko and V2n = Vo, at n = 2n + 1, k2n+1 = k, and V2n+1 = V1. Now, from the relations in (6) we get Wn = µ+ kn (wn-1 + wn-2) and zn = e + vn (žn-1 + zn-2). (9) Using (8) in (9), we have W2n = H+ ko (w2n-1 + w2n-2), W2n+1 = µ+ k1 (w2n + w2n-1), (10) Z2n = €+ vo (z2n-1 + 2n-2), 22n+1 = €+ V1 (22n + 22n-1).
Let w2n-1 =
Un, W2n-2 = Vn, 22n-1= Xn and 22n-2 = Y,n, implies that
Vn+1 – ko Un – ko Vn = µ,
(11)
Un+1 – ki Vn+1 – kị Un = µ,
and
Vo Xn – vo Yn = €,
Xn+1 – Vị Yn+1 – vý Xn = €.
Yn+1
(12)
It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference
equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is
(E – ko) Vn – ko Un
(E – ki) Un – kį E V,
(13)
(14)
where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E - k1) and ko,
respectively,
(E – ki) (E – ko) Vn – (E – ki) ko U,
(E – k1) µ,
(15)
ko (E – k1) Un – ko ki E V,
ko H.
(16)
Thus, the combination of (15) and (16) is
(E² - (ko + ki + ko ki ) E + ko ki) Vn = (1– kı + ko) H,
(E² – ¢ E + ko k1) Vn = (1 – kị + ko) pH,
(17)
where o = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is
easy to obtain the solution,
n
0? – 4 ko ki
Vø2 – 4 ko ki
(1– kị + ko
1 — kо — k1
Vn = A
+ B
(18)
since A and B are constants. By Substituting (18) in (13), we give
n
4² – 4 ko ki
6² – 4 ko ki
1
U, = A
ko
V
V
- 1
2
2
0 - V02 – 4 ko ki
² – 4 ko ki
(19)
+ B
ko
- 1
- (-)
1- k1 + ko
- ko – ki
+
ko
u.
ko
6.
Transcribed Image Text:Let w2n-1 = Un, W2n-2 = Vn, 22n-1= Xn and 22n-2 = Y,n, implies that Vn+1 – ko Un – ko Vn = µ, (11) Un+1 – ki Vn+1 – kị Un = µ, and Vo Xn – vo Yn = €, Xn+1 – Vị Yn+1 – vý Xn = €. Yn+1 (12) It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is (E – ko) Vn – ko Un (E – ki) Un – kį E V, (13) (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E - k1) and ko, respectively, (E – ki) (E – ko) Vn – (E – ki) ko U, (E – k1) µ, (15) ko (E – k1) Un – ko ki E V, ko H. (16) Thus, the combination of (15) and (16) is (E² - (ko + ki + ko ki ) E + ko ki) Vn = (1– kı + ko) H, (E² – ¢ E + ko k1) Vn = (1 – kị + ko) pH, (17) where o = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, n 0? – 4 ko ki Vø2 – 4 ko ki (1– kị + ko 1 — kо — k1 Vn = A + B (18) since A and B are constants. By Substituting (18) in (13), we give n 4² – 4 ko ki 6² – 4 ko ki 1 U, = A ko V V - 1 2 2 0 - V02 – 4 ko ki ² – 4 ko ki (19) + B ko - 1 - (-) 1- k1 + ko - ko – ki + ko u. ko 6.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,