e graph of the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Can you answer b
The function f is defined for 0 < x < 2 by
0 if 0<x< 1,
3 if 1 < x < 2;
Find the coefficients of the Fourier sine series for f(x).
f(x) =
b) Sketch the graph of the function to which the Fourier sine series converges
on -6 ≤ x ≤ 6. Use X's to mark points showing what the Fourier sine series converges
to at jump discontinuity.
Transcribed Image Text:The function f is defined for 0 < x < 2 by 0 if 0<x< 1, 3 if 1 < x < 2; Find the coefficients of the Fourier sine series for f(x). f(x) = b) Sketch the graph of the function to which the Fourier sine series converges on -6 ≤ x ≤ 6. Use X's to mark points showing what the Fourier sine series converges to at jump discontinuity.
Expert Solution
Step 1

Here, in part b we have to sketch the graph of the function to which fourier sine series converges on -6x6. We have to use X to mark points showing what the Fourier sine series converges to a jump discontinuity. We have to see to it how the converge is taking place.

How can we determine the Fourier series' convergence at point of discontinuity?
It has been explored how to describe such function using Fourier series, and it has been noted that this series converges at the point of discontinuity to the average value between the function's two limits relative to the jump point. 
Therefore, this convergence for step function occurs at the exact value of one half.

 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,