e*+ cos x (d) h(x) = tan x (e) y = Vx sec x e* =dx.secX.さャx.d secxrが4リxのsecX.àビ .5ecX-ド4リズ·secx+tanX.どズ·sとx-ビ -4• secx-et x2.secxtan x +x2 secx•ex %3D 2x2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
100%
May u please help me with this solutions and let me know what I have is correct thanks
### Calculus Derivatives

#### Problem (d)
Find the derivative of the function:
\[ h(x) = \frac{e^x + \cos x}{\tan x} \]

#### Problem (e)
Find the derivative of the function:
\[ y = \sqrt{x} \cdot \sec x \cdot e^x \]

**Solution:**
\[
\begin{aligned}
& y = \sqrt{x} \cdot \sec x \cdot e^x \\
& = \frac{d}{dx} \left( x^{1/2} \cdot \sec x \cdot e^x \right) \\
& = \frac{d}{dx} (x^{1/2}) \cdot \sec x \cdot e^x + x^{1/2} \cdot \frac{d}{dx} (\sec x \cdot e^x) \\
& = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \cdot \left( \sec x \cdot \frac{d}{dx} (e^x) + e^x \cdot \frac{d}{dx} (\sec x) \right) \\
& = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \left( \sec x \cdot e^x + e^x \cdot \sec x \cdot \tan x \right) \\
& = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \cdot \sec x \cdot e^x (1 + \tan x) \\
& = \frac{e^x \cdot \sec x}{2 \sqrt{x}} + e^x \cdot \sec x \left( \frac{x^{1/2}}{x^{1/2}} + x^{1/2} \cdot \tan x \right) \\
& = \frac{e^x \cdot \sec x}{2 \sqrt{x}} + e^x \cdot \sec x \left( \
Transcribed Image Text:### Calculus Derivatives #### Problem (d) Find the derivative of the function: \[ h(x) = \frac{e^x + \cos x}{\tan x} \] #### Problem (e) Find the derivative of the function: \[ y = \sqrt{x} \cdot \sec x \cdot e^x \] **Solution:** \[ \begin{aligned} & y = \sqrt{x} \cdot \sec x \cdot e^x \\ & = \frac{d}{dx} \left( x^{1/2} \cdot \sec x \cdot e^x \right) \\ & = \frac{d}{dx} (x^{1/2}) \cdot \sec x \cdot e^x + x^{1/2} \cdot \frac{d}{dx} (\sec x \cdot e^x) \\ & = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \cdot \left( \sec x \cdot \frac{d}{dx} (e^x) + e^x \cdot \frac{d}{dx} (\sec x) \right) \\ & = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \left( \sec x \cdot e^x + e^x \cdot \sec x \cdot \tan x \right) \\ & = \frac{1}{2} x^{-1/2} \cdot \sec x \cdot e^x + x^{1/2} \cdot \sec x \cdot e^x (1 + \tan x) \\ & = \frac{e^x \cdot \sec x}{2 \sqrt{x}} + e^x \cdot \sec x \left( \frac{x^{1/2}}{x^{1/2}} + x^{1/2} \cdot \tan x \right) \\ & = \frac{e^x \cdot \sec x}{2 \sqrt{x}} + e^x \cdot \sec x \left( \
### Limits in Calculus:

#### Problem (b)
Evaluate:
\[ \lim_{x \to \infty} \frac{5x^2 - 8x^4}{3x^4 + 9} \]

This limit involves a rational function where the degrees of the polynomials in the numerator and the denominator are different.

#### Solution Steps:
1. **Identify the highest degree terms** in both the numerator and the denominator:
   \[ \text{Numerator: } -8x^4 \]
   \[ \text{Denominator: } 3x^4 \]

2. **Divide both the numerator and the denominator** by \(x^4\), the highest power in the denominator:
   \[ \frac{5x^2 - 8x^4}{3x^4 + 9} = \frac{\frac{5x^2}{x^4} - \frac{8x^4}{x^4}}{\frac{3x^4}{x^4} + \frac{9}{x^4}} = \frac{\frac{5}{x^2} - 8}{3 + \frac{9}{x^4}} \]

3. **Take the limit** as \(x\) approaches infinity:
   \[ \lim_{x \to \infty} \frac{\frac{5}{x^2} - 8}{3 + \frac{9}{x^4}} \]
   As \(x \to \infty\), \(\frac{5}{x^2} \to 0\) and \(\frac{9}{x^4} \to 0\):
   \[ \frac{0 - 8}{3 + 0} = \frac{-8}{3} \]

4. **Conclusion**:
   \[ \lim_{x \to \infty} \frac{5x^2 - 8x^4}{3x^4 + 9} = -\frac{8}{3} \]

---

#### Problem (c)
Evaluate:
\[ \lim_{x \to 0} \frac{\tan 3x}{5x} \]

This limit involves the tangent function, and the presented form involves \(x\) approaching zero.

#### Solution Steps:
1. **Use the small-angle approximation**:
   For small angles
Transcribed Image Text:### Limits in Calculus: #### Problem (b) Evaluate: \[ \lim_{x \to \infty} \frac{5x^2 - 8x^4}{3x^4 + 9} \] This limit involves a rational function where the degrees of the polynomials in the numerator and the denominator are different. #### Solution Steps: 1. **Identify the highest degree terms** in both the numerator and the denominator: \[ \text{Numerator: } -8x^4 \] \[ \text{Denominator: } 3x^4 \] 2. **Divide both the numerator and the denominator** by \(x^4\), the highest power in the denominator: \[ \frac{5x^2 - 8x^4}{3x^4 + 9} = \frac{\frac{5x^2}{x^4} - \frac{8x^4}{x^4}}{\frac{3x^4}{x^4} + \frac{9}{x^4}} = \frac{\frac{5}{x^2} - 8}{3 + \frac{9}{x^4}} \] 3. **Take the limit** as \(x\) approaches infinity: \[ \lim_{x \to \infty} \frac{\frac{5}{x^2} - 8}{3 + \frac{9}{x^4}} \] As \(x \to \infty\), \(\frac{5}{x^2} \to 0\) and \(\frac{9}{x^4} \to 0\): \[ \frac{0 - 8}{3 + 0} = \frac{-8}{3} \] 4. **Conclusion**: \[ \lim_{x \to \infty} \frac{5x^2 - 8x^4}{3x^4 + 9} = -\frac{8}{3} \] --- #### Problem (c) Evaluate: \[ \lim_{x \to 0} \frac{\tan 3x}{5x} \] This limit involves the tangent function, and the presented form involves \(x\) approaching zero. #### Solution Steps: 1. **Use the small-angle approximation**: For small angles
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning