dy = x – y°, y(1)= 2. dx Consider the IVP %3| Use Euler's Method to approximate y(2). Use step size h = 0.5.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Euler's Method for Approximating Solutions to Initial Value Problems

**Consider the Initial Value Problem (IVP):**
\[ \frac{dy}{dx} = x - y^2, \quad y(1) = 2. \]

**Objective:**
Use Euler’s Method to approximate \( y(2) \). Use a step size \( h = 0.5 \). (So, just two steps needed.)

In other words, find the approximate value of the solution function \( y(x) \) when \( x = 2 \).

### Procedure

You can fill in the table below:

\[
\begin{array}{|c|c|c|}
\hline
x_n & y_n & f(x_n, y_n) \\ 
\hline
x_0 = 1 & y_0 = 2 & \\
\hline
x_1 = 1.5 & y_1 = & \\
\hline
x_2 = 2.0 & y_2 = & \\
\hline
\end{array}
\]

### Calculation Steps

1. **Initial Point:**
   - \( x_0 = 1 \)
   - \( y_0 = 2 \)
   - Function Value: \( f(x_0, y_0) = x_0 - y_0^2 = 1 - 2^2 = 1 - 4 = -3 \)
   
   First Euler step:
   \[ y_1 = y_0 + h \cdot f(x_0, y_0) = 2 + 0.5 \cdot (-3) = 2 - 1.5 = 0.5 \]
   
2. **Second Point:**
   - \( x_1 = 1.5 \)
   - \( y_1 = 0.5 \)
   - Function Value: \( f(x_1, y_1) = x_1 - y_1^2 = 1.5 - 0.5^2 = 1.5 - 0.25 = 1.25 \)
   
   Second Euler step:
   \[ y_2 = y_1 + h \cdot f(x_1, y_1) = 0.5 + 0.5 \cdot 1
Transcribed Image Text:### Euler's Method for Approximating Solutions to Initial Value Problems **Consider the Initial Value Problem (IVP):** \[ \frac{dy}{dx} = x - y^2, \quad y(1) = 2. \] **Objective:** Use Euler’s Method to approximate \( y(2) \). Use a step size \( h = 0.5 \). (So, just two steps needed.) In other words, find the approximate value of the solution function \( y(x) \) when \( x = 2 \). ### Procedure You can fill in the table below: \[ \begin{array}{|c|c|c|} \hline x_n & y_n & f(x_n, y_n) \\ \hline x_0 = 1 & y_0 = 2 & \\ \hline x_1 = 1.5 & y_1 = & \\ \hline x_2 = 2.0 & y_2 = & \\ \hline \end{array} \] ### Calculation Steps 1. **Initial Point:** - \( x_0 = 1 \) - \( y_0 = 2 \) - Function Value: \( f(x_0, y_0) = x_0 - y_0^2 = 1 - 2^2 = 1 - 4 = -3 \) First Euler step: \[ y_1 = y_0 + h \cdot f(x_0, y_0) = 2 + 0.5 \cdot (-3) = 2 - 1.5 = 0.5 \] 2. **Second Point:** - \( x_1 = 1.5 \) - \( y_1 = 0.5 \) - Function Value: \( f(x_1, y_1) = x_1 - y_1^2 = 1.5 - 0.5^2 = 1.5 - 0.25 = 1.25 \) Second Euler step: \[ y_2 = y_1 + h \cdot f(x_1, y_1) = 0.5 + 0.5 \cdot 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,