dy (x² + xy) = 3xy+2y² In solving , one sets y VX. Which one of the following equations are then found?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Question 13
dy
(x² + xy) dx = 3xy+2y²
In solving
, one
sets Y=VX . Which one of the following equations
are then found?
1+v
1
A
√
VV+2) dv=S=²/2dx
v(v+2)
1
1
® √ ₁²/²7/√∞v = √²/²/2 dx
B
3+V
1+v
© √ ² 1 + 2√2²₂°v = √ = dx
S
3v+2v²
1
Ⓒ √ ²3 ²+² v ov = √²/7 dx
D
S ==
3+v
1 + v
ⒸL-
S 1+V
E
=S=dx
2.2.
dv=
Transcribed Image Text:Question 13 dy (x² + xy) dx = 3xy+2y² In solving , one sets Y=VX . Which one of the following equations are then found? 1+v 1 A √ VV+2) dv=S=²/2dx v(v+2) 1 1 ® √ ₁²/²7/√∞v = √²/²/2 dx B 3+V 1+v © √ ² 1 + 2√2²₂°v = √ = dx S 3v+2v² 1 Ⓒ √ ²3 ²+² v ov = √²/7 dx D S == 3+v 1 + v ⒸL- S 1+V E =S=dx 2.2. dv=
A
1+v
v(v+2)
-ov = √²/²/2/2
dv
1
® √ ₁²/²= v dv= √2+1/2 dx
B
3+V
© S - S =/=dx
с
1+v
3v+2v²
2 dv=
Ⓒ √ ² =²= √dv = √²=²+2 dx
S
D
3+V
Ⓒ √ √² + v₁₂ αv = √²/2 dx
E
dv
v²+2v
X
F
√ 2²/=/dv=S=²=/dx
1+v
G S
2v²+2v
dx
·S=²=dx
X
-dv=
Transcribed Image Text:A 1+v v(v+2) -ov = √²/²/2/2 dv 1 ® √ ₁²/²= v dv= √2+1/2 dx B 3+V © S - S =/=dx с 1+v 3v+2v² 2 dv= Ⓒ √ ² =²= √dv = √²=²+2 dx S D 3+V Ⓒ √ √² + v₁₂ αv = √²/2 dx E dv v²+2v X F √ 2²/=/dv=S=²=/dx 1+v G S 2v²+2v dx ·S=²=dx X -dv=
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,