dy Find for y = dx /9 – x4 dy dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find \(\frac{dy}{dx}\) for \(y = \frac{x^2}{\sqrt{9 - x^4}}\).

---

**Solution:**

To find \(\frac{dy}{dx}\), you need to apply the quotient rule and the chain rule.

1. **Quotient Rule:** If you have a function \(\frac{u}{v}\), the derivative is given by:

   \[
   \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}
   \]

   Here, \(u = x^2\) and \(v = \sqrt{9 - x^4}\).

2. **Find \(\frac{du}{dx}\):**

   \[
   \frac{du}{dx} = 2x
   \]

3. **Find \(\frac{dv}{dx}\):**

   - First, express \(v = (9 - x^4)^{1/2}\).
   - Use the chain rule: the derivative of \((9 - x^4)^{1/2}\) is:

     \[
     \frac{1}{2}(9 - x^4)^{-1/2} \cdot (-4x^3) = -2x^3(9 - x^4)^{-1/2}
     \]

4. **Apply the Quotient Rule:**

   - Substitute back into the quotient rule formula:

     \[
     \frac{dy}{dx} = \frac{\sqrt{9 - x^4} \cdot 2x - x^2 \cdot \left(-2x^3(9 - x^4)^{-1/2}\right)}{(9 - x^4)}
     \]

5. **Simplify:**

   - Combine terms:  

     \[
     \frac{dy}{dx} = \frac{2x\sqrt{9 - x^4} + 2x^5(9 - x^4)^{-1/2}}{9 - x^4}
     \]

This expression represents the derivative of the function \(y\) with respect to \(x\). Be sure to include further simplification if necessary.

**Final Answer:
Transcribed Image Text:**Problem Statement:** Find \(\frac{dy}{dx}\) for \(y = \frac{x^2}{\sqrt{9 - x^4}}\). --- **Solution:** To find \(\frac{dy}{dx}\), you need to apply the quotient rule and the chain rule. 1. **Quotient Rule:** If you have a function \(\frac{u}{v}\), the derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \(u = x^2\) and \(v = \sqrt{9 - x^4}\). 2. **Find \(\frac{du}{dx}\):** \[ \frac{du}{dx} = 2x \] 3. **Find \(\frac{dv}{dx}\):** - First, express \(v = (9 - x^4)^{1/2}\). - Use the chain rule: the derivative of \((9 - x^4)^{1/2}\) is: \[ \frac{1}{2}(9 - x^4)^{-1/2} \cdot (-4x^3) = -2x^3(9 - x^4)^{-1/2} \] 4. **Apply the Quotient Rule:** - Substitute back into the quotient rule formula: \[ \frac{dy}{dx} = \frac{\sqrt{9 - x^4} \cdot 2x - x^2 \cdot \left(-2x^3(9 - x^4)^{-1/2}\right)}{(9 - x^4)} \] 5. **Simplify:** - Combine terms: \[ \frac{dy}{dx} = \frac{2x\sqrt{9 - x^4} + 2x^5(9 - x^4)^{-1/2}}{9 - x^4} \] This expression represents the derivative of the function \(y\) with respect to \(x\). Be sure to include further simplification if necessary. **Final Answer:
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning