dy Differentiate ax by applying the chain rule repeatedly. Show work 7 y =(√x + = = 2₂2) ³² X-2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Differentiate \(\frac{dy}{dx}\) by applying the chain rule repeatedly. Show work.

Given:
\[ y = \left( \sqrt{x} + \frac{x}{x-2} \right)^7 \]

**Explanation:**

The given function \( y \) is a composite function where the outer function is \((u)^7\) and the inner function \(u\) is \( \sqrt{x} + \frac{x}{x-2} \).

To differentiate using the chain rule, follow these steps:

1. **Differentiate the outer function:**
   Let \( y = u^7 \).
   Then, \(\frac{dy}{du} = 7u^6 \).

2. **Differentiate the inner function \(u\):**
   Let \( u = \sqrt{x} + \frac{x}{x-2} \).
   
   To differentiate \(u\), split it into two parts:
   \[
   u = \sqrt{x} + \frac{x}{x-2}
   \]

   - Differentiate \(\sqrt{x}\):
     \[ \frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}} \]

   - Differentiate \(\frac{x}{x-2}\):
     Use the quotient rule where \( f(x) = x \) and \( g(x) = x - 2 \):
     \[
     \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}
     \]
     \[
     = \frac{(x - 2)(1) - x(1)}{(x - 2)^2}
     \]
     \[
     = \frac{x - 2 - x}{(x - 2)^2}
     \]
     \[
     = -\frac{2}{(x - 2)^2}
     \]

   Therefore,
   \[
   \frac{du}{dx} = \frac{1}{2\sqrt{x}} - \frac{2}{(x - 2)^2}
   \]

3. **Combine the results using the chain rule:**
   \[
   \frac{dy
Transcribed Image Text:**Problem Statement:** Differentiate \(\frac{dy}{dx}\) by applying the chain rule repeatedly. Show work. Given: \[ y = \left( \sqrt{x} + \frac{x}{x-2} \right)^7 \] **Explanation:** The given function \( y \) is a composite function where the outer function is \((u)^7\) and the inner function \(u\) is \( \sqrt{x} + \frac{x}{x-2} \). To differentiate using the chain rule, follow these steps: 1. **Differentiate the outer function:** Let \( y = u^7 \). Then, \(\frac{dy}{du} = 7u^6 \). 2. **Differentiate the inner function \(u\):** Let \( u = \sqrt{x} + \frac{x}{x-2} \). To differentiate \(u\), split it into two parts: \[ u = \sqrt{x} + \frac{x}{x-2} \] - Differentiate \(\sqrt{x}\): \[ \frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}} \] - Differentiate \(\frac{x}{x-2}\): Use the quotient rule where \( f(x) = x \) and \( g(x) = x - 2 \): \[ \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} \] \[ = \frac{(x - 2)(1) - x(1)}{(x - 2)^2} \] \[ = \frac{x - 2 - x}{(x - 2)^2} \] \[ = -\frac{2}{(x - 2)^2} \] Therefore, \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}} - \frac{2}{(x - 2)^2} \] 3. **Combine the results using the chain rule:** \[ \frac{dy
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning