dx 16. S sin Ex di √x u= √√x du= I u 12/12 dx = ५५ -1/2 dx 2 би du YN

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
Am I doing the u-substitution correctly?
### Problem 16: Integration of \( \frac{\sin(\sqrt{x})}{\sqrt{x}} \)

To solve the integral \( \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \), we can use substitution. Let's follow through the steps:

1. **Substitution**:
   Let \( u = \sqrt{x} \). 
   
   Then, \( u^2 = x \).

   Differentiating both sides with respect to \( x \),
   \[
   du = \frac{1}{2} x^{-\frac{1}{2}} \, dx = \frac{1}{2} u^{-1} \, dx
   \]
   
   This implies:
   \[
   dx = 2u \, du
   \]

2. **Rewriting the Integral**:
   Substitute \( u = \sqrt{x} \) and \( dx = 2u \, du \),
   \[
   \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\sin(u)}{u} \cdot 2u \, du
   \]
   
   The \( u \)'s cancel out, leaving:
   \[
   \int 2 \sin(u) \, du
   \]

3. **Integration**:
   Integrate \( 2 \sin(u) \),
   \[
   \int 2 \sin(u) \, du = -2 \cos(u) + C
   \]
   
   where \( C \) is the constant of integration.

4. **Substitute Back \( u = \sqrt{x} \)**:
   \[
   -2 \cos(u) + C = -2 \cos(\sqrt{x}) + C
   \]

Thus, the integral \( \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \) evaluates to:
\[
-2 \cos(\sqrt{x}) + C
\]
Transcribed Image Text:### Problem 16: Integration of \( \frac{\sin(\sqrt{x})}{\sqrt{x}} \) To solve the integral \( \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \), we can use substitution. Let's follow through the steps: 1. **Substitution**: Let \( u = \sqrt{x} \). Then, \( u^2 = x \). Differentiating both sides with respect to \( x \), \[ du = \frac{1}{2} x^{-\frac{1}{2}} \, dx = \frac{1}{2} u^{-1} \, dx \] This implies: \[ dx = 2u \, du \] 2. **Rewriting the Integral**: Substitute \( u = \sqrt{x} \) and \( dx = 2u \, du \), \[ \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\sin(u)}{u} \cdot 2u \, du \] The \( u \)'s cancel out, leaving: \[ \int 2 \sin(u) \, du \] 3. **Integration**: Integrate \( 2 \sin(u) \), \[ \int 2 \sin(u) \, du = -2 \cos(u) + C \] where \( C \) is the constant of integration. 4. **Substitute Back \( u = \sqrt{x} \)**: \[ -2 \cos(u) + C = -2 \cos(\sqrt{x}) + C \] Thus, the integral \( \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \) evaluates to: \[ -2 \cos(\sqrt{x}) + C \]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning