During any period, a potential customer arrives at a certain facility with probability 0.5. If there are already two people at the facility (including the one being served), the potential customer leaves the facility immediately and never returns. However, if there is one person or less, he enters the facility and becomes an actual customer. The manager of the facility has three types of service configurations available. At the beginning of each period, a decision must be made on which configuration to use. If she uses her “off” configuration at a cost of $0/period, no customer is served. If she uses her “slow” configuration at a cost of $3/period and any customers are present, one customer will be served and leave the facility at the end of the period with probability 0.6. If she uses her “fast” configuration at a cost of $9/period and any customers are present, one customer will be served and leave the facility at the end of the period with probability 0.8. The probability of more than one customer arriving or more than one customer being served in a period is zero. If no customer is present at the time of decision, no customer is served in that period (i.e., the arriving customer will have to wait for the next period to enter service). A revenue of $50 is earned when a customer is served and departed. There is no penalty for rejecting a customer. a. Formulate the problem of choosing the service configuration period by period as a Markov decision process. Identify the states and decisions. For each combination of state and decision, find the expected profit (revenue – cost of configuration) incurred during that period. b. Formulate a linear programming problem for finding an optimal stationary deterministic policy maximizing expected profit per period. (For full credit, i) Define the decision variables in the formulation, ii) Use the values of the parameters in the formulation, rather than the parameter names, iii) All constraints must be written explicitly (one-by-one, rather than as a family)) c. Solve the linear programming problem by, e.g., Excel solver. Then, report the optimal stationary policy and the expected profit per period. d. If, instead, we consider the discounted profit problem with ? = 0.9, what would be the optimal stationary policy?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

During any period, a potential customer arrives at a certain facility with probability 0.5. If there are already two people at the facility (including the one being served), the potential customer leaves the facility immediately and never returns. However, if there is one person or less, he enters the facility and becomes an actual customer. The manager of the facility has three types of service configurations available. At the beginning of each period, a decision must be made on which configuration to use. If she uses her “off” configuration at a cost of $0/period, no customer is served. If she uses her “slow” configuration at a cost of $3/period and any customers are present, one customer will be served and leave the facility at the end of the period with probability 0.6. If she uses her “fast” configuration at a cost
of $9/period and any customers are present, one customer will be served and leave the facility at the end of the period with probability 0.8. The probability of more than one customer arriving or more than one customer being served in a period is zero. If no customer is present at the time of decision, no customer is served in that period (i.e., the arriving customer will have to wait for the next period to enter service). A revenue of $50 is earned when a customer is served and departed. There is no penalty for rejecting a customer.


a. Formulate the problem of choosing the service configuration period by
period as a Markov decision process. Identify the states and decisions. For each combination of state and decision, find the expected profit (revenue – cost of configuration) incurred during that period.
b. Formulate a linear programming problem for finding an optimal stationary deterministic policy maximizing expected profit per period. (For full credit, i) Define the decision variables in the formulation, ii) Use the values of the parameters in the formulation, rather than the parameter names, iii) All constraints must be written explicitly (one-by-one, rather than as a family))
c. Solve the linear programming problem by, e.g., Excel solver. Then, report the optimal stationary policy and the expected profit per period.
d. If, instead, we consider the discounted profit problem with ? = 0.9, what would be the optimal stationary policy?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,