Draw the image of the unit square (shown in green) under the transformation matrix A =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
## Transformation of the Unit Square

**Objective:**
Draw the image of the unit square, shown in green on the grid, under the transformation matrix \( A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \).

**Instructions:**
1. **Identify the Unit Square:**
   - The unit square is positioned with its bottom-left corner at the origin (0,0) and occupies the coordinates (0,0), (1,0), (1,1), and (0,1).

2. **Apply the Transformation Matrix:**
   - Use the matrix \( A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \) to transform each vertex of the unit square.

3. **Calculate New Coordinates:**
   - Calculate the new coordinates for each vertex by multiplying each vertex coordinate by matrix \( A \).
   
   For the vertices:
   - (0,0):  
     \[
     \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
     \]
   - (1,0):
     \[
     \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}
     \]
   - (1,1):
     \[
     \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}
     \]
   - (0,1):
     \[
     \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
Transcribed Image Text:## Transformation of the Unit Square **Objective:** Draw the image of the unit square, shown in green on the grid, under the transformation matrix \( A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \). **Instructions:** 1. **Identify the Unit Square:** - The unit square is positioned with its bottom-left corner at the origin (0,0) and occupies the coordinates (0,0), (1,0), (1,1), and (0,1). 2. **Apply the Transformation Matrix:** - Use the matrix \( A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \) to transform each vertex of the unit square. 3. **Calculate New Coordinates:** - Calculate the new coordinates for each vertex by multiplying each vertex coordinate by matrix \( A \). For the vertices: - (0,0): \[ \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] - (1,0): \[ \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \] - (1,1): \[ \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \] - (0,1): \[ \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,