Draw electric field lines and a Gaussian surface of the given charges on the space provided. Then state whether the flux is positive, negative or zero. Keep in mind that you will be drawing a two-dimensional picture, which is actually three-dimensional in nature. 1. A charge +q when the surface is a sphere centered on the charge 2. A charge –q when the surface is a sphere centered on the charge 3. A charge +q when an irregular surface surrounds the charge
Draw electric field lines and a Gaussian surface of the given charges on the space provided. Then state whether the flux is positive, negative or zero. Keep in mind that you will be drawing a two-dimensional picture, which is actually three-dimensional in nature.
1. A charge +q when the surface is a sphere centered on the charge
2. A charge –q when the surface is a sphere centered on the charge
3. A charge +q when an irregular surface surrounds the charge
4. A charge –2q when a surface is a sphere centered on the charge
5. A charge -q when an irregular surface surrounds the charge
6. An electric dipole made with charges +q and –q and a surface that encloses the +q but not the –q charge.
7. Based on the electric field lines and Gaussian surfaces that you have drawn for the examples above, what can you conclude about the relationship among the electric flux, electric field lines, and the charge enclosed by the surface?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images