Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of pounds), and let y be the miles per gallon (mpg). x 27 43 32 47 23 40 34 52 y 29 22 22 13 29 17 21 14 Complete parts (a) through (e), given Σx = 298, Σy = 167, Σx2 = 11,800, Σy2 = 3745, Σxy = 5833, and r ≈ −0.911. (a) Draw a scatter diagram displaying the data. Flash Player version 10 or higher is required for this question. You can get Flash Player free from Adobe's website. (b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.) Σx = Σy = Σx2 = Σy2 = Σxy = r = (c) Find x, and y. Then find the equation of the least-squares line = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.) x = y = = + x (d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line. (e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 = explained % unexplained % (f) Suppose a car weighs x = 36 (hundred pounds). What does the least-squares line forecast for y = miles per gallon? (Round your answer to two decimal places.) mpg 3.It is thought that basketball teams that make too many fouls in a game tend to lose the game even if they otherwise play well. Let x be the number of fouls more than (i.e., over and above) the opposing team. Let y be the percentage of times the team with the larger number of fouls wins the game. x 1 4 5 6 y 51 44 33 26 Complete parts (a) through (e), given Σx = 16, Σy = 154, Σx2 = 78, Σy2 = 6302, Σxy = 548, and r ≈ −0.941. (a) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 = explained % unexplained % (b) If a team had x = 3 fouls over and above the opposing team, what does the least-squares equation forecast for y? (Round your answer to two decimal places.) %
Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of pounds), and let y be the miles per gallon (mpg). x 27 43 32 47 23 40 34 52 y 29 22 22 13 29 17 21 14 Complete parts (a) through (e), given Σx = 298, Σy = 167, Σx2 = 11,800, Σy2 = 3745, Σxy = 5833, and r ≈ −0.911. (a) Draw a scatter diagram displaying the data. Flash Player version 10 or higher is required for this question. You can get Flash Player free from Adobe's website. (b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.) Σx = Σy = Σx2 = Σy2 = Σxy = r = (c) Find x, and y. Then find the equation of the least-squares line = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.) x = y = = + x (d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line. (e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 = explained % unexplained % (f) Suppose a car weighs x = 36 (hundred pounds). What does the least-squares line forecast for y = miles per gallon? (Round your answer to two decimal places.) mpg 3.It is thought that basketball teams that make too many fouls in a game tend to lose the game even if they otherwise play well. Let x be the number of fouls more than (i.e., over and above) the opposing team. Let y be the percentage of times the team with the larger number of fouls wins the game. x 1 4 5 6 y 51 44 33 26 Complete parts (a) through (e), given Σx = 16, Σy = 154, Σx2 = 78, Σy2 = 6302, Σxy = 548, and r ≈ −0.941. (a) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.) r2 = explained % unexplained % (b) If a team had x = 3 fouls over and above the opposing team, what does the least-squares equation forecast for y? (Round your answer to two decimal places.) %
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of pounds), and let y be the miles per gallon (mpg).
x | 27 | 43 | 32 | 47 | 23 | 40 | 34 | 52 |
y | 29 | 22 | 22 | 13 | 29 | 17 | 21 | 14 |
Complete parts (a) through (e), given Σx = 298, Σy = 167, Σx2 = 11,800, Σy2 = 3745, Σxy = 5833, and
r ≈ −0.911.
(a) Draw a scatter diagram displaying the data.
(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the samplecorrelation coefficient r. (Round your value for r to three decimal places.)
(c) Find x, and y. Then find the equation of the least-squares line = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)
(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.
(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
(f) Suppose a car weighs x = 36 (hundred pounds). What does the least-squares line forecast for y = miles per gallon? (Round your answer to two decimal places.)
mpg
Flash Player version 10 or higher is required for this question.
You can get Flash Player free from Adobe's website.
(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample
Σx = | |
Σy = | |
Σx2 = | |
Σy2 = | |
Σxy = | |
r = |
(c) Find x, and y. Then find the equation of the least-squares line = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)
x | = | |
y | = | |
= | + x |
(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.
(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
r2 = | |
explained | % |
unexplained | % |
(f) Suppose a car weighs x = 36 (hundred pounds). What does the least-squares line forecast for y = miles per gallon? (Round your answer to two decimal places.)
mpg
3.It is thought that basketball teams that make too many fouls in a game tend to lose the game even if they otherwise play well. Let x be the number of fouls more than (i.e., over and above) the opposing team. Let y be the percentage of times the team with the larger number of fouls wins the game.
Complete parts (a) through (e), given Σx = 16, Σy = 154, Σx2 = 78, Σy2 = 6302, Σxy = 548, and
x | 1 | 4 | 5 | 6 |
y | 51 | 44 | 33 | 26 |
r ≈ −0.941.
(a) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)
(b) If a team had x = 3 fouls over and above the opposing team, what does the least-squares equation forecast for y? (Round your answer to two decimal places.)
%
r2 = | |
explained | % |
unexplained | % |
(b) If a team had x = 3 fouls over and above the opposing team, what does the least-squares equation forecast for y? (Round your answer to two decimal places.)
%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman