Divide the complex numbers. No i^2 or spaces in answers please. (2-3i) (3+4i)

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem Statement:**

Divide the complex numbers. No \(i^2\) or spaces in answers please.

\[
\frac{(2-3i)}{(3+4i)} = \boxed{}
\]

**Explanation:**

The problem involves dividing two complex numbers. To solve, we multiply the numerator and the denominator by the conjugate of the denominator. For the denominator \(3+4i\), the conjugate is \(3-4i\).

**Steps to Solve:**

1. **Multiply the Numerator and Denominator by the Conjugate:**

   \[
   \frac{(2-3i)}{(3+4i)} \times \frac{(3-4i)}{(3-4i)}
   \]

2. **Expand the Numerator:**

   \[
   (2-3i)(3-4i) = 2 \cdot 3 + 2 \cdot (-4i) + (-3i) \cdot 3 + (-3i) \cdot (-4i)
   \]

   Simplify each term:

   \[
   6 - 8i - 9i + 12i^2 \quad \text{(Note: \(i^2 = -1\))}
   \]

   \[
   6 - 17i + 12(-1) = 6 - 17i - 12 = -6 - 17i
   \]

3. **Expand the Denominator:**

   \[
   (3+4i)(3-4i) = 3 \cdot 3 + 3 \cdot (-4i) + 4i \cdot 3 + 4i \cdot (-4i)
   \]

   Simplify each term:

   \[
   9 - 12i + 12i - 16i^2
   \]

   \[
   9 + 16 = 25
   \]

4. **Combine Results:**

   \[
   \frac{-6 - 17i}{25}
   \]

5. **Final Result:**

   \[
   -\frac{6}{25} - \frac{17}{25}i
   \]

The division of the complex numbers yields:

\[
-\frac{6}{25} - \frac
Transcribed Image Text:**Problem Statement:** Divide the complex numbers. No \(i^2\) or spaces in answers please. \[ \frac{(2-3i)}{(3+4i)} = \boxed{} \] **Explanation:** The problem involves dividing two complex numbers. To solve, we multiply the numerator and the denominator by the conjugate of the denominator. For the denominator \(3+4i\), the conjugate is \(3-4i\). **Steps to Solve:** 1. **Multiply the Numerator and Denominator by the Conjugate:** \[ \frac{(2-3i)}{(3+4i)} \times \frac{(3-4i)}{(3-4i)} \] 2. **Expand the Numerator:** \[ (2-3i)(3-4i) = 2 \cdot 3 + 2 \cdot (-4i) + (-3i) \cdot 3 + (-3i) \cdot (-4i) \] Simplify each term: \[ 6 - 8i - 9i + 12i^2 \quad \text{(Note: \(i^2 = -1\))} \] \[ 6 - 17i + 12(-1) = 6 - 17i - 12 = -6 - 17i \] 3. **Expand the Denominator:** \[ (3+4i)(3-4i) = 3 \cdot 3 + 3 \cdot (-4i) + 4i \cdot 3 + 4i \cdot (-4i) \] Simplify each term: \[ 9 - 12i + 12i - 16i^2 \] \[ 9 + 16 = 25 \] 4. **Combine Results:** \[ \frac{-6 - 17i}{25} \] 5. **Final Result:** \[ -\frac{6}{25} - \frac{17}{25}i \] The division of the complex numbers yields: \[ -\frac{6}{25} - \frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education