DIRECTIONS: The entire test has been answered for you. Your job is to check the answers for errors. If there are errors, do the following in the table after the test sample: 1. Correct the answer. 2. Explain why the answer is wrong. 3. Then explain why your correction is right. ANSWERED TEST WITH ERRORS: Use your knowledge on Higher-order derivative and Chain Rule to show that z" + 4z' + 8z = 0 if z = e-2× (sin 2x + cos 2x). Z = e-2x (sin 2x + cos 2x) Let u = 2x, then du = 2dx du = 2 dx Z = e-"(sin u + cos u) z' = e-"Dx(sin u + cos u) + (sin u + cos u)Dx(e-") z' = e-"(cos u – sin u) – e-"(sinu + cosu) = e-u cos u – e-u sin u – e-u sin u - e-u cos u dy = -2e-u sin u du dy = -2e-" sinu, du du Substitute = 2 using the Chain Rule, dx dz dy du = (-2e-u sin u)2 = -4e-u sin u dx du du Substitute u = 2x, z' = -4e-2x sin 2x To get the second derivative, again let u = 2x then du = 2dx du = 2 dx z' = -4e-u sin u z" = -4[e¬uD,x(sin u) + sin u Dx(e¬u) = -4e-" cos u – 4e-" sin u dy = -4e-u cos u – 4e-u sin u du dy du Substitute = -4e-" cos u – 4e¬" sinu, du = 2 using the Chain Rule, dx dz dy du 3 (-4е-и соs и — 4e-u sin u)2 — —8e-и cos u — 8e-u sin u %3D du du dx WBL S-OBE MELC-Aligned Self Learning Module Basic Calculus 22 Substitute u = 2x, z" = -8e-2x cos 2x – 8e-2x sin 2x Show z" + 4z' + 8z = 0. (-4e-2x sin 2x ) + 4(-8e-2x cos 2x – 8e-2x sin 2x) + 8[e=2x(sin 2x + cos 2x)] = 0 -4e-2x sin 2x – 32e-2x cos 2x – 32e-2x sin 2x + 8e-2x sin 2x + 8e-2x cos 2x = 0 -24e-2x cos 2x – 28e-2x sin 2x # 0 IDENTIFIED ERROR CORRECTION OF ERROR EXPLANATION OF CORRECTION
DIRECTIONS: The entire test has been answered for you. Your job is to check the answers for errors. If there are errors, do the following in the table after the test sample: 1. Correct the answer. 2. Explain why the answer is wrong. 3. Then explain why your correction is right. ANSWERED TEST WITH ERRORS: Use your knowledge on Higher-order derivative and Chain Rule to show that z" + 4z' + 8z = 0 if z = e-2× (sin 2x + cos 2x). Z = e-2x (sin 2x + cos 2x) Let u = 2x, then du = 2dx du = 2 dx Z = e-"(sin u + cos u) z' = e-"Dx(sin u + cos u) + (sin u + cos u)Dx(e-") z' = e-"(cos u – sin u) – e-"(sinu + cosu) = e-u cos u – e-u sin u – e-u sin u - e-u cos u dy = -2e-u sin u du dy = -2e-" sinu, du du Substitute = 2 using the Chain Rule, dx dz dy du = (-2e-u sin u)2 = -4e-u sin u dx du du Substitute u = 2x, z' = -4e-2x sin 2x To get the second derivative, again let u = 2x then du = 2dx du = 2 dx z' = -4e-u sin u z" = -4[e¬uD,x(sin u) + sin u Dx(e¬u) = -4e-" cos u – 4e-" sin u dy = -4e-u cos u – 4e-u sin u du dy du Substitute = -4e-" cos u – 4e¬" sinu, du = 2 using the Chain Rule, dx dz dy du 3 (-4е-и соs и — 4e-u sin u)2 — —8e-и cos u — 8e-u sin u %3D du du dx WBL S-OBE MELC-Aligned Self Learning Module Basic Calculus 22 Substitute u = 2x, z" = -8e-2x cos 2x – 8e-2x sin 2x Show z" + 4z' + 8z = 0. (-4e-2x sin 2x ) + 4(-8e-2x cos 2x – 8e-2x sin 2x) + 8[e=2x(sin 2x + cos 2x)] = 0 -4e-2x sin 2x – 32e-2x cos 2x – 32e-2x sin 2x + 8e-2x sin 2x + 8e-2x cos 2x = 0 -24e-2x cos 2x – 28e-2x sin 2x # 0 IDENTIFIED ERROR CORRECTION OF ERROR EXPLANATION OF CORRECTION
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Identify the error and correct it then explain
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,