Direction. Answer the following: Finds the roots of equations using required relative error dk < 0.001 1. Do three iterations (by hand) of the bisection method, applied to f (x) = x³ – 2, using a = 0 and b = 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

answer this and I provide some examples and the table of bisection method  (pls follow the attachment that i gave)

Direction. Answer the following: Finds the roots of equations using required relative error
dk < 0.001
1. Do three iterations (by hand) of the bisection method, applied to f (x) = x³ – 2, using
a = 0 and b = 2
Transcribed Image Text:Direction. Answer the following: Finds the roots of equations using required relative error dk < 0.001 1. Do three iterations (by hand) of the bisection method, applied to f (x) = x³ – 2, using a = 0 and b = 2
BISECTION METHOD TABLE!!!!!
0.625
0.562
0.593
-0.040
0.593
0.562
0.577
-0.015
0.577
0.562
0.569
-0.002
k
br
f(Ck+1)
dk
Remarks
0.569
0.562
0.565
0.003
0.007
Continue
ak
Ck+1
8
0.569
0.565
0.567
0.0002
0.003
Continue
9
0.569
0.567
0.568
0.001
Stop
ΕΧΑMPLES
therefore, X = 0. 568 = x10
Example 1.) If f (x) = 2 – e*, and take the original interval to be [a, b] = [0,1].
Example 3.) f(x) = 6x-5x2 + 7x - 2
Solution:
Solution:
to
-10
2
40
f(x)
-20
-2
f(a) = 1, f(b) = -0.7183
c = 10+ 1] - 1
f(c) = 0.3513 > 0. Therefore, [a, b] = ;,1|
k
S(Ck+1)
Remarks
Ck+1
0.5
1
1.000
Continue
1
0.5
0.25
-0.040
2
.5
0.375
0.375
2
0.5
0.25
0.375
0.238
3.
0.25
0.312
0.343
0.327
-0.12
%3D
4
0.312
0.054
-
0.343
0.312
-0.035
0.343
0.327
0.335
0.009
0.023
Continue
f(a) = 0.3513, f(b) = -0.7183
%3D
%3D
Continue solution until X = 0.333
3
c =
2
4
Example 4.) Solve 2x3 – 2.5x – 5 = O for the root in the interval [1, 2].
f(c) = -0.1170 < 0. Therefore, [a, b] =
Solution:
k-0; a, = 1; bo = 2
s (do* bo) = s (2) - r(1.5) = -2 < 0
= F(1.5) = -2 < o
Therefore, f(ao)s (be) = 11 > 0 and If(1.5)| > E
(ao +
f(a) = 0.3513, f (b) = –0.1170
C =
8.
k = 1; a, = 1.5; b, = 2
f(c) = 0.1318 > 0. Therefore, [a, b] =
r() - r (15* 2)
s(aD:) = s (15*2) =
f(1.75) = 1.344
%3D
Therefore, f(a)f (b) = -2.688 < 0 and IS(1.75)| >e
k = 2; az = 1.5; b, = 1.75
Details of the remaining steps are provided in the table below:
Example 2.) f(x) = e¬*-x
k
(Ck+1)
Remarks
Solution:
ak
1
Ck+1
1.5
-2.000
Continue
1
15
175
1 344
x2 = 0; f(x?) = 1
xº = 1; f(xº) = -0.632
1.5
1.75
1.625
-0.481
3
1.625
1.75
1.688
0.392
4
1.625
1.688
1.656
-0.054
5
1.656
1.688
1.672
0.167
k
f(ck+1)
dk
Remarks
6.
1.656
1.672
1.664
0.056
Ck+1
0.5
7
1.656
1.664
1.660
0.001
1
0.106
Continue
8
1.656
1.660
1.658
-0.027
1
0.5
0.75
-0.277
9
1.658
1.660
1.659
-0.013
10
1.660
1.660
1.660
-0.006
2
0.75
0.5
0.625
-0.089
11
1.660
1.660
1.660
-0.003
3
0.625
0.5
0.562
0.008
12
1.660
1.660
1.660
-0.001
--
Transcribed Image Text:BISECTION METHOD TABLE!!!!! 0.625 0.562 0.593 -0.040 0.593 0.562 0.577 -0.015 0.577 0.562 0.569 -0.002 k br f(Ck+1) dk Remarks 0.569 0.562 0.565 0.003 0.007 Continue ak Ck+1 8 0.569 0.565 0.567 0.0002 0.003 Continue 9 0.569 0.567 0.568 0.001 Stop ΕΧΑMPLES therefore, X = 0. 568 = x10 Example 1.) If f (x) = 2 – e*, and take the original interval to be [a, b] = [0,1]. Example 3.) f(x) = 6x-5x2 + 7x - 2 Solution: Solution: to -10 2 40 f(x) -20 -2 f(a) = 1, f(b) = -0.7183 c = 10+ 1] - 1 f(c) = 0.3513 > 0. Therefore, [a, b] = ;,1| k S(Ck+1) Remarks Ck+1 0.5 1 1.000 Continue 1 0.5 0.25 -0.040 2 .5 0.375 0.375 2 0.5 0.25 0.375 0.238 3. 0.25 0.312 0.343 0.327 -0.12 %3D 4 0.312 0.054 - 0.343 0.312 -0.035 0.343 0.327 0.335 0.009 0.023 Continue f(a) = 0.3513, f(b) = -0.7183 %3D %3D Continue solution until X = 0.333 3 c = 2 4 Example 4.) Solve 2x3 – 2.5x – 5 = O for the root in the interval [1, 2]. f(c) = -0.1170 < 0. Therefore, [a, b] = Solution: k-0; a, = 1; bo = 2 s (do* bo) = s (2) - r(1.5) = -2 < 0 = F(1.5) = -2 < o Therefore, f(ao)s (be) = 11 > 0 and If(1.5)| > E (ao + f(a) = 0.3513, f (b) = –0.1170 C = 8. k = 1; a, = 1.5; b, = 2 f(c) = 0.1318 > 0. Therefore, [a, b] = r() - r (15* 2) s(aD:) = s (15*2) = f(1.75) = 1.344 %3D Therefore, f(a)f (b) = -2.688 < 0 and IS(1.75)| >e k = 2; az = 1.5; b, = 1.75 Details of the remaining steps are provided in the table below: Example 2.) f(x) = e¬*-x k (Ck+1) Remarks Solution: ak 1 Ck+1 1.5 -2.000 Continue 1 15 175 1 344 x2 = 0; f(x?) = 1 xº = 1; f(xº) = -0.632 1.5 1.75 1.625 -0.481 3 1.625 1.75 1.688 0.392 4 1.625 1.688 1.656 -0.054 5 1.656 1.688 1.672 0.167 k f(ck+1) dk Remarks 6. 1.656 1.672 1.664 0.056 Ck+1 0.5 7 1.656 1.664 1.660 0.001 1 0.106 Continue 8 1.656 1.660 1.658 -0.027 1 0.5 0.75 -0.277 9 1.658 1.660 1.659 -0.013 10 1.660 1.660 1.660 -0.006 2 0.75 0.5 0.625 -0.089 11 1.660 1.660 1.660 -0.003 3 0.625 0.5 0.562 0.008 12 1.660 1.660 1.660 -0.001 --
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,