Differentiate. h(w) (w5+ 8w^) (w-4-w-6)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

Differentiate the following function:

\[ h(w) = (w^5 + 8w^4)(w^{-4} - w^{-6}) \]

### Explanation

This expression is the product of two polynomial functions. To differentiate \( h(w) \), you can apply the product rule. The product rule is expressed as:

\[ (uv)' = u'v + uv' \]

where \( u \) and \( v \) are functions of \( w \).

### Steps for Solution

1. **Identify \( u \) and \( v \):**
   - \( u = w^5 + 8w^4 \)
   - \( v = w^{-4} - w^{-6} \)

2. **Find the derivatives \( u' \) and \( v' \):**
   - \( u' = \frac{d}{dw}(w^5 + 8w^4) = 5w^4 + 32w^3 \)
   - \( v' = \frac{d}{dw}(w^{-4} - w^{-6}) = -4w^{-5} + 6w^{-7} \)

3. **Apply the product rule:**
   - \( h'(w) = u'v + uv' \)
   - Substitute back into the derivative formula and simplify if necessary.

This approach provides the step-by-step process to differentiate the given function using the appropriate rules of calculus.
Transcribed Image Text:### Problem Statement Differentiate the following function: \[ h(w) = (w^5 + 8w^4)(w^{-4} - w^{-6}) \] ### Explanation This expression is the product of two polynomial functions. To differentiate \( h(w) \), you can apply the product rule. The product rule is expressed as: \[ (uv)' = u'v + uv' \] where \( u \) and \( v \) are functions of \( w \). ### Steps for Solution 1. **Identify \( u \) and \( v \):** - \( u = w^5 + 8w^4 \) - \( v = w^{-4} - w^{-6} \) 2. **Find the derivatives \( u' \) and \( v' \):** - \( u' = \frac{d}{dw}(w^5 + 8w^4) = 5w^4 + 32w^3 \) - \( v' = \frac{d}{dw}(w^{-4} - w^{-6}) = -4w^{-5} + 6w^{-7} \) 3. **Apply the product rule:** - \( h'(w) = u'v + uv' \) - Substitute back into the derivative formula and simplify if necessary. This approach provides the step-by-step process to differentiate the given function using the appropriate rules of calculus.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning