Differentiaaliyhtälöpari Sa'(t) = -a(t) + y(t) lo (t) = i,#(t) – y(t) kuvaa kahden symbioosissa elävän populaation edustajien lukumääriä. Mallin mukaisesti oman lajin yksilöillä on epäsuotuisa vaikutus kasvunopeuteen kun taas toisen lajin yksilöt vaikuttavat suotuisasti kasvunopeuteen. Määrää eliminoimalla differentiaaliyhtälö, josta voit ratkaista x(t):n ja laske differentiaaliyhtälösysteemin yleinen ratkaisu. Määrää myös alkuehdot x (0) = 800, y(0) = 400 toteuttava yksityisratkaisu. Mitä voit sanoa populaatioiden edustajien lukumääristä x. ja Yoo pitkän ajan kuluttua? Opastus: Termin æ(") (t) saat syöttämällä diff(x(t),t,n). Yhtälö x(t):n suhteen: Yleinen ratkaisu: ¤(t) = y(t) Yksityisratkaisu: æ(t) y(t) Populaatiot pitkän ajan kuluttua Yoo =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Question below in English and same text in Finnish in the picture.

A pair of differential equations

x′(t) = -1/4*x(t) + y(t)
y′(t) = 1/16*x(t) −1/4*y(t)

describes the numbers of representatives of two populations living in symbiosis. According to the model, individuals of one species have an adverse effect on growth rate while individuals of another species have a favorable effect on growth rate.

Determine by eliminating the differential equation from which you can solve x(t) and calculate the general solution of the system of differential equations. Also determine a private solution that satisfies the initial conditions x(0) = 800, y(0) = 400.

What can you say about the numbers of population representatives x∞ and y∞ over a long period of time?

Equation for x(t)

General solution:
x(t) =
y(t) =

Private solution:
x(t) =
y(t) =

Populations after a long time
x∞ =
y∞ =

Differentiaaliyhtälöpari
Sa'(t) = -a(t) + y(t)
lo (t) = i,#(t) – y(t)
kuvaa kahden symbioosissa elävän populaation edustajien lukumääriä. Mallin mukaisesti oman lajin
yksilöillä on epäsuotuisa vaikutus kasvunopeuteen kun taas toisen lajin yksilöt vaikuttavat suotuisasti
kasvunopeuteen.
Määrää eliminoimalla differentiaaliyhtälö, josta voit ratkaista x(t):n ja laske differentiaaliyhtälösysteemin
yleinen ratkaisu. Määrää myös alkuehdot x (0) = 800, y(0) = 400 toteuttava yksityisratkaisu. Mitä voit
sanoa populaatioiden edustajien lukumääristä x. ja Yoo pitkän ajan kuluttua?
Opastus: Termin æ(") (t) saat syöttämällä diff(x(t),t,n).
Yhtälö x(t):n suhteen:
Yleinen ratkaisu:
¤(t) =
y(t)
Yksityisratkaisu:
æ(t)
y(t)
Populaatiot pitkän ajan kuluttua
Yoo =
Transcribed Image Text:Differentiaaliyhtälöpari Sa'(t) = -a(t) + y(t) lo (t) = i,#(t) – y(t) kuvaa kahden symbioosissa elävän populaation edustajien lukumääriä. Mallin mukaisesti oman lajin yksilöillä on epäsuotuisa vaikutus kasvunopeuteen kun taas toisen lajin yksilöt vaikuttavat suotuisasti kasvunopeuteen. Määrää eliminoimalla differentiaaliyhtälö, josta voit ratkaista x(t):n ja laske differentiaaliyhtälösysteemin yleinen ratkaisu. Määrää myös alkuehdot x (0) = 800, y(0) = 400 toteuttava yksityisratkaisu. Mitä voit sanoa populaatioiden edustajien lukumääristä x. ja Yoo pitkän ajan kuluttua? Opastus: Termin æ(") (t) saat syöttämällä diff(x(t),t,n). Yhtälö x(t):n suhteen: Yleinen ratkaisu: ¤(t) = y(t) Yksityisratkaisu: æ(t) y(t) Populaatiot pitkän ajan kuluttua Yoo =
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,