df Calculate if f(u) = 6u², u(2) = −5, and u' (2) = −5. dx x=2 (Give your answer as a whole or exact number.) df dx \x=2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculus Problem: Chain Rule Application

**Problem Statement:**

Calculate \(\left. \frac{df}{dx} \right|_{x=2}\) if \( f(u) = 6u^2 \), \( u(2) = -5 \), and \( u'(2) = -5 \).

*(Give your answer as a whole or exact number.)*

**Solution:**

Consider the given functions and derivatives:

1. \( f(u) = 6u^2 \)
2. \( u(2) = -5 \)
3. \( u'(2) = -5 \)

We need to find the derivative \(\left. \frac{df}{dx} \right|_{x=2}\). 

Using the chain rule:
\[
\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}
\]

First, compute \(\frac{df}{du}\):
\[
f(u) = 6u^2 \implies \frac{df}{du} = 12u
\]

Next, evaluate \(\frac{df}{du}\) at \( u = u(2) = -5 \):
\[
\left. \frac{df}{du} \right|_{u = -5} = 12(-5) = -60
\]

We also know that \( \left. \frac{du}{dx} \right|_{x=2} = u'(2) = -5 \).

Now, multiply these values together:
\[
\left. \frac{df}{dx} \right|_{x=2} = \left( \left. \frac{df}{du} \right|_{u=-5} \right) \cdot \left( \left. \frac{du}{dx} \right|_{x=2} \right)
= (-60) \cdot (-5) = 300
\]

Therefore,
\[
\left. \frac{df}{dx} \right|_{x=2} = 300
\]

**Answer:**
\[
\left. \frac{df}{dx} \right|_{x=2} = 300
\]
Transcribed Image Text:### Calculus Problem: Chain Rule Application **Problem Statement:** Calculate \(\left. \frac{df}{dx} \right|_{x=2}\) if \( f(u) = 6u^2 \), \( u(2) = -5 \), and \( u'(2) = -5 \). *(Give your answer as a whole or exact number.)* **Solution:** Consider the given functions and derivatives: 1. \( f(u) = 6u^2 \) 2. \( u(2) = -5 \) 3. \( u'(2) = -5 \) We need to find the derivative \(\left. \frac{df}{dx} \right|_{x=2}\). Using the chain rule: \[ \frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx} \] First, compute \(\frac{df}{du}\): \[ f(u) = 6u^2 \implies \frac{df}{du} = 12u \] Next, evaluate \(\frac{df}{du}\) at \( u = u(2) = -5 \): \[ \left. \frac{df}{du} \right|_{u = -5} = 12(-5) = -60 \] We also know that \( \left. \frac{du}{dx} \right|_{x=2} = u'(2) = -5 \). Now, multiply these values together: \[ \left. \frac{df}{dx} \right|_{x=2} = \left( \left. \frac{df}{du} \right|_{u=-5} \right) \cdot \left( \left. \frac{du}{dx} \right|_{x=2} \right) = (-60) \cdot (-5) = 300 \] Therefore, \[ \left. \frac{df}{dx} \right|_{x=2} = 300 \] **Answer:** \[ \left. \frac{df}{dx} \right|_{x=2} = 300 \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning