Determine whether u 17. (Notation means perpendicular; i.e., u v means u and u are orthogonal.) (a) u = 7i+3j+5k, v = -8i+ 4j+2k. (b) = 67+7+3k, v=4i-6k. (c) = (1, 1, 1), 7 (-1,0,0).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Show full answers
Determine whether \(\vec{u} \perp \vec{v}\). (Notation \(\perp\) means perpendicular; i.e., \(\vec{u} \perp \vec{v}\) means \(\vec{u}\) and \(\vec{v}\) are orthogonal.)

(a) \(\vec{u} = 7\vec{i} + 3\vec{j} + 5\vec{k}\), \(\vec{v} = -8\vec{i} + 4\vec{j} + 2\vec{k}\).

(b) \(\vec{u} = 6\vec{i} + \vec{j} + 3\vec{k}\), \(\vec{v} = 4\vec{i} - 6\vec{k}\).

(c) \(\vec{u} = \langle 1, 1, 1 \rangle\), \(\vec{v} = \langle -1, 0, 0 \rangle\).
Transcribed Image Text:Determine whether \(\vec{u} \perp \vec{v}\). (Notation \(\perp\) means perpendicular; i.e., \(\vec{u} \perp \vec{v}\) means \(\vec{u}\) and \(\vec{v}\) are orthogonal.) (a) \(\vec{u} = 7\vec{i} + 3\vec{j} + 5\vec{k}\), \(\vec{v} = -8\vec{i} + 4\vec{j} + 2\vec{k}\). (b) \(\vec{u} = 6\vec{i} + \vec{j} + 3\vec{k}\), \(\vec{v} = 4\vec{i} - 6\vec{k}\). (c) \(\vec{u} = \langle 1, 1, 1 \rangle\), \(\vec{v} = \langle -1, 0, 0 \rangle\).
Expert Solution
Step 1: Part(a)

If the vector two vectors are orthogonal then their dot product is zero.

The given vectors are:

u equals open parentheses table row 7 3 5 end table close parentheses comma thin space thin space v equals open parentheses table row cell negative 8 end cell 4 2 end table close parentheses

Now find the dot product.

u times v equals open parentheses table row 7 3 5 end table close parentheses times open parentheses table row cell negative 8 end cell 4 2 end table close parentheses
u times v equals 7 open parentheses negative 8 close parentheses plus 3 times thin space 4 plus 5 times thin space 2
u times v equals negative 56 plus 12 plus 10
u times v equals negative 34
u times v not equal to 0

Here the dot product is not zero.

Therefore the given vectors are orthogonal.

steps

Step by step

Solved in 4 steps with 9 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning