Determine whether the functions y₁ and y₂ are linearly dependent on the interval (0,1). y₁ = tan ²t-sec c²t₁ y₂ = 6 Select the correct choice below and, if necessary, fill in the answer box within your choice. © A. Since y₁ = (y₂ on (0,1), the functions are linearly independent on (0,1). (Simplify your answer.) B. 1 Y₂ on (0,1), the functions are linearly dependent on (0,1). Since y₁ = (Simplify your answer.) C. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly independent on (0,1). D. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly dependent on (0,1).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine whether the functions y₁ and y₂ are linearly dependent on the interval (0,1).
y₁ = tan ²t-sec
c²t₁ y₂ = 6
Select the correct choice below and, if necessary, fill in the answer box within your choice.
© A. Since y₁ = (y₂ on (0,1), the functions are linearly independent on (0,1).
(Simplify your answer.)
B.
1
Y₂ on (0,1), the functions are linearly dependent on (0,1).
Since y₁ =
(Simplify your answer.)
C. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly independent on (0,1).
D. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly dependent on (0,1).
Transcribed Image Text:Determine whether the functions y₁ and y₂ are linearly dependent on the interval (0,1). y₁ = tan ²t-sec c²t₁ y₂ = 6 Select the correct choice below and, if necessary, fill in the answer box within your choice. © A. Since y₁ = (y₂ on (0,1), the functions are linearly independent on (0,1). (Simplify your answer.) B. 1 Y₂ on (0,1), the functions are linearly dependent on (0,1). Since y₁ = (Simplify your answer.) C. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly independent on (0,1). D. Since y₁ is not a constant multiple of y₂ on (0,1), the functions are linearly dependent on (0,1).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,